Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 2 |
Descriptor
Source
Multivariate Behavioral… | 10 |
Author
Publication Type
Journal Articles | 10 |
Reports - Evaluative | 10 |
Information Analyses | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
South Korea | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Minnesota Multiphasic… | 1 |
What Works Clearinghouse Rating
Hwang, Heungsun; Dillon, William R. – Multivariate Behavioral Research, 2010
A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is…
Descriptors: Data Analysis, Multivariate Analysis, Classification, Monte Carlo Methods
Ruscio, John; Kaczetow, Walter – Multivariate Behavioral Research, 2009
Interest in modeling the structure of latent variables is gaining momentum, and many simulation studies suggest that taxometric analysis can validly assess the relative fit of categorical and dimensional models. The generation and parallel analysis of categorical and dimensional comparison data sets reduces the subjectivity required to interpret…
Descriptors: Classification, Models, Comparative Analysis, Statistical Analysis

Milligan, Glenn W. – Multivariate Behavioral Research, 1989
Simulated test data (N=864 artificial data sets) with four different error conditions were used to study the recovery characteristics of the beta-flexible clustering method. Conditions under which the beta-flexible method provides good recovery are discussed. (SLD)
Descriptors: Classification, Cluster Analysis, Cluster Grouping, Simulation

van Buuren, Stef; de Leeuw, Jan – Multivariate Behavioral Research, 1992
Application of equality constraints on the categories of a variable is a simple and useful extension of multiple correspondence analysis. Equality is an easy way to incorporate prior knowledge. A procedure to deal with unequal category numbers and with subsets of variables is outlined and illustrated. (SLD)
Descriptors: Classification, Knowledge Level, Mathematical Models, Multivariate Analysis

Rigdon, Edward E. – Multivariate Behavioral Research, 1995
This article presents a straightforward classification system that is a necessary and sufficient condition for identification of the structural component of structural equation models of the block-recursive type with no more than two equations per block. Limitations of other identification techniques are discussed. (SLD)
Descriptors: Classification, Equations (Mathematics), Estimation (Mathematics), Identification

Millsap, Roger E.; Meredith, William – Multivariate Behavioral Research, 1991
Mathematical relationships between three-mode component analysis and stationary component analysis are explored. Theorems are presented giving constraints that must be satisfied for equivalency between component representations provided by the methods. In general, the two approaches give mathematically distinct representations. (SLD)
Descriptors: Classification, Equations (Mathematics), Longitudinal Studies, Mathematical Models

Joachimsthaler, Erich A.; Stam, Antonie – Multivariate Behavioral Research, 1990
Mathematical programing formulas are introduced as new approaches to solve the classification problem in discriminant analysis. The research literature is reviewed, and an illustration using a real-world classification problem is provided. Issues relevant to potential uses of these formulations are discussed. (TJH)
Descriptors: Classification, Discriminant Analysis, Equations (Mathematics), Literature Reviews

Price, Lydia J. – Multivariate Behavioral Research, 1993
The ability of the NORMIX algorithm to recover overlapping population structures was compared to the OVERCLUS procedure and another clustering procedure in a Monte Carlo study. NORMIX is found to be more accurate than other procedures in recovering overlapping population structure when appropriate implementation options are specified. (SLD)
Descriptors: Algorithms, Classification, Cluster Analysis, Comparative Analysis

Schweizer, Karl – Multivariate Behavioral Research, 1991
A mathematical formula is introduced for the effect of integrating data. A method is then derived to eliminate the effect from correlations of variables, including mean composites, thus allowing for a clustering algorithm that requires allocation of variables according to the magnitude of their correlations. Examples illustrate the procedure. (SLD)
Descriptors: Algorithms, Classification, Cluster Analysis, Computer Simulation

Kloot, Willem A. van der; Herk, Hester van – Multivariate Behavioral Research, 1991
Two sets of real sorting data from 50 college students are used to compare results of multidimensional scaling of raw co-occurrence frequencies or dissimilarity measures (D) and profile distances (delta) to determine which yields a better representation of the underlying structure of 2 sets of stimuli. Slight differences are discussed. (SLD)
Descriptors: Classification, Cognitive Processes, College Students, Comparative Analysis