NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kulinskaya, Elena; Hoaglin, David C. – Research Synthesis Methods, 2023
For estimation of heterogeneity variance T[superscript 2] in meta-analysis of log-odds-ratio, we derive new mean- and median-unbiased point estimators and new interval estimators based on a generalized Q statistic, Q[subscript F], in which the weights depend on only the studies' effective sample sizes. We compare them with familiar estimators…
Descriptors: Q Methodology, Statistical Analysis, Meta Analysis, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Matsushima, Yuki; Noma, Hisashi; Yamada, Tomohide; Furukawa, Toshi A. – Research Synthesis Methods, 2020
Meta-analyses of diagnostic test accuracy (DTA) studies have been gaining prominence in research in clinical epidemiology and health technology development. In these DTA meta-analyses, some studies may have markedly different characteristics from the others and potentially be inappropriate to include. The inclusion of these "outlying"…
Descriptors: Diagnostic Tests, Clinical Diagnosis, Accuracy, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Yue; Sun, Feng; Redline, Susan; Wang, Rui – Research Synthesis Methods, 2020
Meta-analyses of clinical trials typically focus on one outcome at a time. However, treatment decision-making depends on an overall assessment of outcomes balancing benefit in various domains and potential risks. This calls for meta-analysis methods for combined outcomes that encompass information from different domains. When individual patient…
Descriptors: Meta Analysis, Patients, Data, Outcomes of Treatment
Peer reviewed Peer reviewed
Direct linkDirect link
Marshall, Iain J.; Noel-Storr, Anna; Kuiper, Joël; Thomas, James; Wallace, Byron C. – Research Synthesis Methods, 2018
Machine learning (ML) algorithms have proven highly accurate for identifying Randomized Controlled Trials (RCTs) but are not used much in practice, in part because the best way to make use of the technology in a typical workflow is unclear. In this work, we evaluate ML models for RCT classification (support vector machines, convolutional neural…
Descriptors: Randomized Controlled Trials, Accuracy, Computer Software, Classification