Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 18 |
Descriptor
Goodness of Fit | 22 |
Structural Equation Models | 16 |
Statistical Analysis | 8 |
Evaluation Methods | 7 |
Sample Size | 7 |
Simulation | 7 |
Monte Carlo Methods | 6 |
Comparative Analysis | 5 |
Computation | 5 |
Factor Analysis | 5 |
Data Analysis | 4 |
More ▼ |
Source
Structural Equation Modeling:… | 22 |
Author
Publication Type
Journal Articles | 22 |
Reports - Evaluative | 22 |
Education Level
Secondary Education | 1 |
Audience
Teachers | 1 |
Location
Germany | 2 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ihnwhi Heo; Fan Jia; Sarah Depaoli – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The Bayesian piecewise growth model (PGM) is a useful class of models for analyzing nonlinear change processes that consist of distinct growth phases. In applications of Bayesian PGMs, it is important to accurately capture growth trajectories and carefully consider knot placements. The presence of missing data is another challenge researchers…
Descriptors: Bayesian Statistics, Goodness of Fit, Data Analysis, Models
C. J. Van Lissa; M. Garnier-Villarreal; D. Anadria – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) refers to techniques for identifying groups in data based on a parametric model. Examples include mixture models, LCA with ordinal indicators, and latent class growth analysis. Despite its popularity, there is limited guidance with respect to decisions that must be made when conducting and reporting LCA. Moreover, there…
Descriptors: Multivariate Analysis, Structural Equation Models, Open Source Technology, Computation
Pere J. Ferrando; Ana Hernández-Dorado; Urbano Lorenzo-Seva – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A frequent criticism of exploratory factor analysis (EFA) is that it does not allow correlated residuals to be modelled, while they can be routinely specified in the confirmatory (CFA) model. In this article, we propose an EFA approach in which both the common factor solution and the residual matrix are unrestricted (i.e., the correlated residuals…
Descriptors: Correlation, Factor Analysis, Models, Goodness of Fit
Tong, Xiaoxiao; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Robustness (Statistics), Sample Size
Geiser, Christian; Eid, Michael; West, Stephen G.; Lischetzke, Tanja; Nussbeck, Fridtjof W. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Multimethod data analysis is a complex procedure that is often used to examine the degree to which different measures of the same construct converge in the assessment of this construct. Several authors have called for a greater understanding of the definition and meaning of method effects in different models for multimethod data. In this article,…
Descriptors: Structural Equation Models, Factor Analysis, Multitrait Multimethod Techniques, Comparative Analysis
MacCallum, Robert; Lee, Taehun; Browne, Michael W. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Two general frameworks have been proposed for evaluating statistical power of tests of model fit in structural equation modeling (SEM). Under the Satorra-Saris (1985) approach, to evaluate the power of the test of fit of Model A, a Model B, within which A is nested, is specified as the alternative hypothesis and considered as the true model. We…
Descriptors: Structural Equation Models, Statistical Analysis, Goodness of Fit
Yang, Yanyun; Green, Samuel B. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Reliability can be estimated using structural equation modeling (SEM). Two potential problems with this approach are that estimates may be unstable with small sample sizes and biased with misspecified models. A Monte Carlo study was conducted to investigate the quality of SEM estimates of reliability by themselves and relative to coefficient…
Descriptors: Monte Carlo Methods, Structural Equation Models, Reliability, Sample Size
Jones-Farmer, L. Allison – Structural Equation Modeling: A Multidisciplinary Journal, 2010
When comparing latent variables among groups, it is important to first establish the equivalence or invariance of the measurement model across groups. Confirmatory factor analysis (CFA) is a commonly used methodological approach to examine measurement equivalence/invariance (ME/I). Within the CFA framework, the chi-square goodness-of-fit test and…
Descriptors: Factor Structure, Factor Analysis, Evaluation Research, Goodness of Fit
LaGrange, Beth; Cole, David A. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This article examines 4 approaches for explaining shared method variance, each applied to a longitudinal trait-state-occasion (TSO) model. Many approaches have been developed to account for shared method variance in multitrait-multimethod (MTMM) data. Some of these MTMM approaches (correlated method, orthogonal method, correlated method minus one,…
Descriptors: Structural Equation Models, Longitudinal Studies, Multitrait Multimethod Techniques, Correlation
Zhang, Wei – Structural Equation Modeling: A Multidisciplinary Journal, 2008
A major issue in the utilization of covariance structure analysis is model fit evaluation. Recent years have witnessed increasing interest in various test statistics and so-called fit indexes, most of which are actually based on or closely related to F[subscript 0], a measure of model fit in the population. This study aims to provide a systematic…
Descriptors: Monte Carlo Methods, Statistical Analysis, Comparative Analysis, Structural Equation Models
Hertzog, Christopher; von Oertzen, Timo; Ghisletta, Paolo; Lindenberger, Ulman – Structural Equation Modeling: A Multidisciplinary Journal, 2008
We evaluated the statistical power of single-indicator latent growth curve models to detect individual differences in change (variances of latent slopes) as a function of sample size, number of longitudinal measurement occasions, and growth curve reliability. We recommend the 2 degree-of-freedom generalized test assessing loss of fit when both…
Descriptors: Sample Size, Error of Measurement, Individual Differences, Statistical Analysis
Bandalos, Deborah L. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This study examined the efficacy of 4 different parceling methods for modeling categorical data with 2, 3, and 4 categories and with normal, moderately nonnormal, and severely nonnormal distributions. The parceling methods investigated were isolated parceling in which items were parceled with other items sharing the same source of variance, and…
Descriptors: Structural Equation Models, Computation, Goodness of Fit, Classification
Marsh, Herbert W.; Ludtke, Oliver; Trautwein, Ulrich; Morin, Alexandre J. S. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
In this investigation, we used a classic latent profile analysis (LPA), a person-centered approach, to identify groups of students who had similar profiles for multiple dimensions of academic self-concept (ASC) and related these LPA groups to a diverse set of correlates. Consistent with a priori predictions, we identified 5 LPA groups representing…
Descriptors: Structural Equation Models, Goodness of Fit, Profiles, Prediction
Leite, Walter L. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Univariate latent growth modeling (LGM) of composites of multiple items (e.g., item means or sums) has been frequently used to analyze the growth of latent constructs. This study evaluated whether LGM of composites yields unbiased parameter estimates, standard errors, chi-square statistics, and adequate fit indexes. Furthermore, LGM was compared…
Descriptors: Comparative Analysis, Computation, Structural Equation Models, Goodness of Fit
Nylund, Karen L.; Asparouhov, Tihomir; Muthen, Bengt O. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study…
Descriptors: Test Items, Monte Carlo Methods, Program Effectiveness, Data Analysis
Previous Page | Next Page »
Pages: 1 | 2