NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 58 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Haixiang Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Mediation analysis is an important statistical tool in many research fields, where the joint significance test is widely utilized for examining mediation effects. Nevertheless, the limitation of this mediation testing method stems from its conservative Type I error, which reduces its statistical power and imposes certain constraints on its…
Descriptors: Structural Equation Models, Statistical Significance, Robustness (Statistics), Comparative Testing
Peer reviewed Peer reviewed
Direct linkDirect link
C. J. Van Lissa; M. Garnier-Villarreal; D. Anadria – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) refers to techniques for identifying groups in data based on a parametric model. Examples include mixture models, LCA with ordinal indicators, and latent class growth analysis. Despite its popularity, there is limited guidance with respect to decisions that must be made when conducting and reporting LCA. Moreover, there…
Descriptors: Multivariate Analysis, Structural Equation Models, Open Source Technology, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jeroen D. Mulder; Kim Luijken; Bas B. L. Penning de Vries; Ellen L. Hamaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The use of structural equation models for causal inference from panel data is critiqued in the causal inference literature for unnecessarily relying on a large number of parametric assumptions, and alternative methods originating from the potential outcomes framework have been recommended, such as inverse probability weighting (IPW) estimation of…
Descriptors: Structural Equation Models, Time on Task, Time Management, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Erik-Jan van Kesteren; Daniel L. Oberski – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Structural equation modeling (SEM) is being applied to ever more complex data types and questions, often requiring extensions such as regularization or novel fitting functions. To extend SEM, researchers currently need to completely reformulate SEM and its optimization algorithm -- a challenging and time-consuming task. In this paper, we introduce…
Descriptors: Structural Equation Models, Computation, Graphs, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Categorical structural equation modeling (SEM) methods that fit the model to estimated polychoric correlations have become popular in the social sciences. When population thresholds are high in absolute value, contingency tables in small samples are likely to contain zero frequency cells. Such cells make the estimation of the polychoric…
Descriptors: Structural Equation Models, Correlation, Computation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
van de Schoot, Rens; Hoijtink, Herbert; Hallquist, Michael N.; Boelen, Paul A. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Researchers in the behavioral and social sciences often have expectations that can be expressed in the form of inequality constraints among the parameters of a structural equation model resulting in an informative hypothesis. The questions they would like an answer to are "Is the hypothesis Correct" or "Is the hypothesis…
Descriptors: Bayesian Statistics, Structural Equation Models, Hypothesis Testing, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Xiaoxiao; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Robustness (Statistics), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Evermann, Joerg – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…
Descriptors: Structural Equation Models, Computer Software, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Geiser, Christian; Eid, Michael; West, Stephen G.; Lischetzke, Tanja; Nussbeck, Fridtjof W. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Multimethod data analysis is a complex procedure that is often used to examine the degree to which different measures of the same construct converge in the assessment of this construct. Several authors have called for a greater understanding of the definition and meaning of method effects in different models for multimethod data. In this article,…
Descriptors: Structural Equation Models, Factor Analysis, Multitrait Multimethod Techniques, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
Descriptors: Models, Statistical Analysis, Structural Equation Models, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
MacCallum, Robert; Lee, Taehun; Browne, Michael W. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Two general frameworks have been proposed for evaluating statistical power of tests of model fit in structural equation modeling (SEM). Under the Satorra-Saris (1985) approach, to evaluate the power of the test of fit of Model A, a Model B, within which A is nested, is specified as the alternative hypothesis and considered as the true model. We…
Descriptors: Structural Equation Models, Statistical Analysis, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Tueller, Stephen; Lubke, Gitta – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Structural equation mixture models (SEMMs) are latent class models that permit the estimation of a structural equation model within each class. Fitting SEMMs is illustrated using data from 1 wave of the Notre Dame Longitudinal Study of Aging. Based on the model used in the illustration, SEMM parameter estimation and correct class assignment are…
Descriptors: Structural Equation Models, Computation, Classification, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; Satorra, Albert; Yuan, Ke-Hai – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A typical structural equation model is intended to reproduce the means, variances, and correlations or covariances among a set of variables based on parameter estimates of a highly restricted model. It is not widely appreciated that the sample statistics being modeled can be quite sensitive to outliers and influential observations, leading to bias…
Descriptors: Smoking, Structural Equation Models, Cancer, Correlation
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4