NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)1
Since 2006 (last 20 years)5
Audience
Location
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 27 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
van der Linden, Wim J.; Ren, Hao – Journal of Educational and Behavioral Statistics, 2020
The Bayesian way of accounting for the effects of error in the ability and item parameters in adaptive testing is through the joint posterior distribution of all parameters. An optimized Markov chain Monte Carlo algorithm for adaptive testing is presented, which samples this distribution in real time to score the examinee's ability and optimally…
Descriptors: Bayesian Statistics, Adaptive Testing, Error of Measurement, Markov Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Veldkamp, Bernard P. – Psicologica: International Journal of Methodology and Experimental Psychology, 2010
Application of Bayesian item selection criteria in computerized adaptive testing might result in improvement of bias and MSE of the ability estimates. The question remains how to apply Bayesian item selection criteria in the context of constrained adaptive testing, where large numbers of specifications have to be taken into account in the item…
Descriptors: Selection, Criteria, Bayesian Statistics, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Finkelman, Matthew David – Applied Psychological Measurement, 2010
In sequential mastery testing (SMT), assessment via computer is used to classify examinees into one of two mutually exclusive categories. Unlike paper-and-pencil tests, SMT has the capability to use variable-length stopping rules. One approach to shortening variable-length tests is stochastic curtailment, which halts examination if the probability…
Descriptors: Mastery Tests, Computer Assisted Testing, Adaptive Testing, Test Length
Peer reviewed Peer reviewed
Direct linkDirect link
van der Linden, Wim J. – Applied Psychological Measurement, 2009
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
Descriptors: Simulation, Adaptive Testing, Vocational Aptitude, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kaburlasos, Vassilis G.; Marinagi, Catherine C.; Tsoukalas, Vassilis Th. – Computers & Education, 2008
This work presents innovative cybernetics (feedback) techniques based on Bayesian statistics for drawing questions from an Item Bank towards personalized multi-student improvement. A novel software tool, namely "Module for Adaptive Assessment of Students" (or, "MAAS" for short), implements the proposed (feedback) techniques. In conclusion, a pilot…
Descriptors: Feedback (Response), Student Improvement, Computer Science, Bayesian Statistics
Peer reviewed Peer reviewed
McLeod, Lori; Lewis, Charles; Thissen, David – Applied Psychological Measurement, 2003
Explored procedures to detect test takers using item preknowledge in computerized adaptive testing and suggested a Bayesian posterior log odds ratio index for this purpose. Simulation results support the use of the odds ratio index. (SLD)
Descriptors: Adaptive Testing, Bayesian Statistics, Computer Assisted Testing, Knowledge Level
Peer reviewed Peer reviewed
van der Linden, Wim J. – Psychometrika, 1998
This paper suggests several item selection criteria for adaptive testing that are all based on the use of the true posterior. Some of the ability estimators produced by these criteria are discussed and empirically criticized. (SLD)
Descriptors: Ability, Adaptive Testing, Bayesian Statistics, Computer Assisted Testing
Glas, Cees A. W.; Vos, Hans J. – 1998
A version of sequential mastery testing is studied in which response behavior is modeled by an item response theory (IRT) model. First, a general theoretical framework is sketched that is based on a combination of Bayesian sequential decision theory and item response theory. A discussion follows on how IRT based sequential mastery testing can be…
Descriptors: Adaptive Testing, Bayesian Statistics, Item Response Theory, Mastery Tests
Peer reviewed Peer reviewed
Wang, Tianyou; Vispoel, Walter P. – Journal of Educational Measurement, 1998
Used simulations of computerized adaptive tests to evaluate results yielded by four commonly used ability estimation methods: maximum likelihood estimation (MLE) and three Bayesian approaches. Results show clear distinctions between MLE and Bayesian methods. (SLD)
Descriptors: Ability, Adaptive Testing, Bayesian Statistics, Computer Assisted Testing
De Ayala, R. J.; And Others – 1995
Expected a posteriori has a number of advantages over maximum likelihood estimation or maximum a posteriori (MAP) estimation methods. These include ability estimates (thetas) for all response patterns, less regression towards the mean than MAP ability estimates, and a lower average squared error. R. D. Bock and R. J. Mislevy (1982) state that the…
Descriptors: Adaptive Testing, Bayesian Statistics, Error of Measurement, Estimation (Mathematics)
Wingersky, Marilyn S. – 1989
In a variable-length adaptive test with a stopping rule that relied on the asymptotic standard error of measurement of the examinee's estimated true score, M. S. Stocking (1987) discovered that it was sufficient to know the examinee's true score and the number of items administered to predict with some accuracy whether an examinee's true score was…
Descriptors: Adaptive Testing, Bayesian Statistics, Error of Measurement, Estimation (Mathematics)
Peer reviewed Peer reviewed
Macready, George B.; Dayton, C. Mitchell – Psychometrika, 1992
An adaptive testing algorithm is presented based on an alternative modeling framework, and its effectiveness is investigated in a simulation based on real data. The algorithm uses a latent class modeling framework in which assessed latent attributes are assumed to be categorical variables. (SLD)
Descriptors: Adaptive Testing, Algorithms, Bayesian Statistics, Classification
Peer reviewed Peer reviewed
Nicewander, W. Alan; Thomasson, Gary L. – Applied Psychological Measurement, 1999
Derives three reliability estimates for the Bayes modal estimate (BME) and the maximum-likelihood estimate (MLE) of theta in computerized adaptive tests (CATs). Computes the three reliability estimates and the true reliabilities of both BME and MLE for seven simulated CATs. Results show the true reliabilities for BME and MLE to be nearly identical…
Descriptors: Ability, Adaptive Testing, Bayesian Statistics, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Wen-Chung; Chen, Po-Hsi – Applied Psychological Measurement, 2004
Multidimensional adaptive testing (MAT) procedures are proposed for the measurement of several latent traits by a single examination. Bayesian latent trait estimation and adaptive item selection are derived. Simulations were conducted to compare the measurement efficiency of MAT with those of unidimensional adaptive testing and random…
Descriptors: Item Analysis, Adaptive Testing, Computer Assisted Testing, Computer Simulation
Peer reviewed Peer reviewed
Wang, Tianyou; Hanson, Bradley A.; Lau, Che-Ming A. – Applied Psychological Measurement, 1999
Extended the use of a beta prior in trait estimation to the maximum expected a posteriori (MAP) method of Bayesian estimation. This new method, essentially unbiased MAP, was compared with MAP, essentially unbiased expected a posteriori, weighted likelihood, and maximum-likelihood estimation methods. The new method significantly reduced bias in…
Descriptors: Adaptive Testing, Bayesian Statistics, Computer Assisted Testing, Estimation (Mathematics)
Previous Page | Next Page ยป
Pages: 1  |  2