Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 9 |
Descriptor
Bayesian Statistics | 10 |
Causal Models | 10 |
Statistical Inference | 4 |
Probability | 3 |
Cognitive Processes | 2 |
Inferences | 2 |
Logical Thinking | 2 |
Prediction | 2 |
Regression (Statistics) | 2 |
Research Methodology | 2 |
Theories | 2 |
More ▼ |
Source
Cognitive Science | 2 |
Psychological Review | 2 |
Cognition | 1 |
Grantee Submission | 1 |
Journal of Educational and… | 1 |
Journal of Experimental… | 1 |
Journal of Research on… | 1 |
Society for Research on… | 1 |
Author
Griffiths, Thomas L. | 2 |
Lu, Hongjing | 2 |
Tenenbaum, Joshua B. | 2 |
Beckers, Tom | 1 |
Goodman, Noah D. | 1 |
Gopnik, Alison | 1 |
Holyoak, Keith J. | 1 |
Karabatsos, George | 1 |
Lee, Hee Seung | 1 |
Lijuan Wang | 1 |
Mansinghka, Vikash K. | 1 |
More ▼ |
Publication Type
Reports - Evaluative | 10 |
Journal Articles | 8 |
Opinion Papers | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Location
California | 1 |
Illinois | 1 |
United States | 1 |
Laws, Policies, & Programs
Aid to Families with… | 1 |
Assessments and Surveys
ACT Assessment | 1 |
What Works Clearinghouse Rating
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Lu, Hongjing; Rojas, Randall R.; Beckers, Tom; Yuille, Alan L. – Cognitive Science, 2016
Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about…
Descriptors: Learning Processes, Causal Models, Sequential Learning, Abstract Reasoning
Weisberg, Deena S.; Gopnik, Alison – Cognitive Science, 2013
Young children spend a large portion of their time pretending about non-real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative…
Descriptors: Causal Models, Bayesian Statistics, Young Children, Imagination
Sanborn, Adam N.; Mansinghka, Vikash K.; Griffiths, Thomas L. – Psychological Review, 2013
People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to…
Descriptors: Heuristics, Statistical Inference, Mechanics (Physics), Intuition
Page, Lindsay C. – Journal of Research on Educational Effectiveness, 2012
Experimental evaluations are increasingly common in the U.S. educational policy-research context. Often, in investigations of multifaceted interventions, researchers and policymakers alike are interested in not only "whether" a given intervention impacted an outcome but also "why". What "features" of the intervention…
Descriptors: Educational Experiments, Educational Research, Research Methodology, Income
Goodman, Noah D.; Ullman, Tomer D.; Tenenbaum, Joshua B. – Psychological Review, 2011
The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be…
Descriptors: Causal Models, Logical Thinking, Cognitive Development, Bayesian Statistics
Holyoak, Keith J.; Lee, Hee Seung; Lu, Hongjing – Journal of Experimental Psychology: General, 2010
A fundamental issue for theories of human induction is to specify constraints on potential inferences. For inferences based on shared category membership, an analogy, and/or a relational schema, it appears that the basic goal of induction is to make accurate and goal-relevant inferences that are sensitive to uncertainty. People can use source…
Descriptors: Inferences, Logical Thinking, Bayesian Statistics, Causal Models
Karabatsos, George; Walker, Stephen G. – Society for Research on Educational Effectiveness, 2011
Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression model. Through analyses of real and simulated data, they showed that the BNP regression model outperforms other parametric and nonparametric regression models of common use, in terms of predictive accuracy of the outcome (dependent) variable. The other,…
Descriptors: Bayesian Statistics, Regression (Statistics), Nonparametric Statistics, Statistical Inference
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognition, 2007
People's reactions to coincidences are often cited as an illustration of the irrationality of human reasoning about chance. We argue that coincidences may be better understood in terms of rational statistical inference, based on their functional role in processes of causal discovery and theory revision. We present a formal definition of…
Descriptors: Probability, Statistical Inference, Bayesian Statistics, Theories
Zhang, Junni L.; Rubin, Donald B. – Journal of Educational and Behavioral Statistics, 2003
The topic of "truncation by death" in randomized experiments arises in many fields, such as medicine, economics and education. Traditional approaches addressing this issue ignore the fact that the outcome after the truncation is neither "censored" nor "missing," but should be treated as being defined on an extended sample space. Using an…
Descriptors: Experiments, Predictor Variables, Bayesian Statistics, Death