NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Julian Schuessler; Peter Selb – Sociological Methods & Research, 2025
Directed acyclic graphs (DAGs) are now a popular tool to inform causal inferences. We discuss how DAGs can also be used to encode theoretical assumptions about nonprobability samples and survey nonresponse and to determine whether population quantities including conditional distributions and regressions can be identified. We describe sources of…
Descriptors: Data Collection, Graphs, Error of Measurement, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Jeroen D. Mulder; Kim Luijken; Bas B. L. Penning de Vries; Ellen L. Hamaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The use of structural equation models for causal inference from panel data is critiqued in the causal inference literature for unnecessarily relying on a large number of parametric assumptions, and alternative methods originating from the potential outcomes framework have been recommended, such as inverse probability weighting (IPW) estimation of…
Descriptors: Structural Equation Models, Time on Task, Time Management, Causal Models
Gelman, Andrew; Imbens, Guido – National Bureau of Economic Research, 2014
It is common in regression discontinuity analysis to control for high order (third, fourth, or higher) polynomials of the forcing variable. We argue that estimators for causal effects based on such methods can be misleading, and we recommend researchers do not use them, and instead use estimators based on local linear or quadratic polynomials or…
Descriptors: Regression (Statistics), Mathematical Models, Causal Models, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Landsheer, J. A. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Tetrad IV is a program designed for the specification of causal models. It is specifically designed to search for causal relations, but also offers the possibility to estimate the parameters of a structural equation model. It offers a remarkable graphical user interface, which facilitates building, evaluating, and searching for causal models. The…
Descriptors: Structural Equation Models, Causal Models, Evaluation, Mathematics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2009
This paper examines the estimation of two-stage clustered RCT designs in education research using the Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for the study population (the…
Descriptors: Control Groups, Causal Models, Statistical Significance, Computation
Onwuegbuzie, Anthony J.; Daniel, Larry G. – 1999
The purpose of this paper is to provide an in-depth critical analysis of the use and misuse of correlation coefficients. Various analytical and interpretational misconceptions are reviewed, beginning with the egregious assumption that correlational statistics may be useful in inferring causality. Additional misconceptions, stemming from…
Descriptors: Causal Models, Correlation, Effect Size, Error of Measurement
Peer reviewed Peer reviewed
Sivo, Stephen A.; Willson, Victor L. – Structural Equation Modeling, 2000
Studied whether moving average or autoregressive moving average models fit two longitudinal data sets previously thought to possess quasi-simplex structures better than the quasi-simplex, one-factor, or autoregressive models. Results of a Monte Carlo study show the importance of evaluating the fit, propriety, and parsimony of models before one…
Descriptors: Causal Models, Error of Measurement, Goodness of Fit, Longitudinal Studies
Peer reviewed Peer reviewed
Lund, Thorleif – Scandinavian Journal of Educational Research, 1995
Four general criteria are proposed for the choice of a metrical solution for a causal effect: (1) compatibility with the effect; (2) ease of communication; (3) lack of measurement error bias; and (4) stability across subjects and situations. These criteria are illustrated for randomized and nonrandomized designs. (SLD)
Descriptors: Causal Models, Communication (Thought Transfer), Criteria, Error of Measurement
Thompson, Bruce – 1994
The present paper suggests that multivariate methods ought to be used more frequently in behavioral research and explores the potential consequences of failing to use multivariate methods when these methods are appropriate. The paper explores in detail two reasons why multivariate methods are usually vital. The first is that they limit the…
Descriptors: Analysis of Covariance, Behavioral Science Research, Causal Models, Correlation
Peer reviewed Peer reviewed
Neale, Michael C.; And Others – Multivariate Behavioral Research, 1994
In studies of relatives, conventional multiple regression may not be appropriate because observations are not independent. Obtaining estimates of regression coefficients and correct standard errors from these populations through a structural equation modeling framework is discussed and illustrated with data from twins. (SLD)
Descriptors: Analysis of Covariance, Causal Models, Data Collection, Error of Measurement