NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Wiggins, Joseph B.; Grafsgaard, Joseph F.; Boyer, Kristy Elizabeth; Wiebe, Eric N.; Lester, James C. – International Journal of Artificial Intelligence in Education, 2017
In recent years, significant advances have been made in intelligent tutoring systems, and these advances hold great promise for adaptively supporting computer science (CS) learning. In particular, tutorial dialogue systems that engage students in natural language dialogue can create rich, adaptive interactions. A promising approach to increasing…
Descriptors: Intelligent Tutoring Systems, Self Efficacy, Computer Science Education, Dialogs (Language)
Heiner, Cecily; Zachary, Joseph L. – International Working Group on Educational Data Mining, 2009
Students in introductory programming classes often articulate their questions and information needs incompletely. Consequently, the automatic classification of student questions to provide automated tutorial responses is a challenging problem. This paper analyzes 411 questions from an introductory Java programming course by reducing the natural…
Descriptors: Classification, Questioning Techniques, Introductory Courses, Computer Science Education