Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 1 |
Descriptor
Source
Psychometrika | 7 |
Applied Psychological… | 4 |
Multivariate Behavioral… | 3 |
Applied Measurement in… | 1 |
Evaluation Review | 1 |
Grantee Submission | 1 |
Simulation & Gaming | 1 |
Social Science Computer Review | 1 |
Author
Kelderman, Henk | 2 |
Andrich, David | 1 |
Bashaw, Wilbur L. | 1 |
Beasley, T. Mark | 1 |
Bissett, Randall | 1 |
Bockenholt, Ingo | 1 |
Bockenholt, Ulf | 1 |
Chang, Chih-Hsin | 1 |
Chang, Lucy | 1 |
Clauser, Brian E. | 1 |
Clyman, Stephen G. | 1 |
More ▼ |
Publication Type
Reports - Evaluative | 25 |
Journal Articles | 18 |
Speeches/Meeting Papers | 5 |
Information Analyses | 1 |
Opinion Papers | 1 |
Education Level
Elementary Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
General Social Survey | 1 |
Graduate Record Examinations | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Kenneth Holstein; Erik Harpstead; Rebecca Gulotta; Jodi Forlizzi – Grantee Submission, 2020
As we design increasingly complex systems, we run up against fundamental limitations of human imagination. To support practice, it becomes essential to use authentic data and algorithms as design materials to augment designers' intuitions. Recent work has explored some dimensions of using data as a design material, suggesting the contours of a new…
Descriptors: Computer Simulation, Elementary Secondary Education, Educational Games, Computer Games

Collins, Linda M.; Wugalter, Stuart E. – Multivariate Behavioral Research, 1992
A simulation study was conducted to determine whether latent class model parameters are recovered adequately by Latent Transition Analysis (LTA). Results indicate that parameter recovery is satisfactory overall and that the benefits of adding indicators outweigh the costs. Additional indicators also improve standard errors. An example of LTA is…
Descriptors: Algorithms, Computer Simulation, Longitudinal Studies, Mathematical Models

Kelderman, Henk – Psychometrika, 1992
Describes algorithms used in the computer program LOGIMO for obtaining maximum likelihood estimates of the parameters in loglinear models. These algorithms are also useful for the analysis of loglinear item-response theory models. Presents modified versions of the iterative proportional fitting and Newton-Raphson algorithms. Simulated data…
Descriptors: Algorithms, Computer Simulation, Equations (Mathematics), Estimation (Mathematics)

Macready, George B.; Dayton, C. Mitchell – Psychometrika, 1992
An adaptive testing algorithm is presented based on an alternative modeling framework, and its effectiveness is investigated in a simulation based on real data. The algorithm uses a latent class modeling framework in which assessed latent attributes are assumed to be categorical variables. (SLD)
Descriptors: Adaptive Testing, Algorithms, Bayesian Statistics, Classification

Timpone, Richard J.; Taber, Charles S. – Social Science Computer Review, 1998
Compares traditional mathematical models with computer simulations. Shows the strengths and flexibility of algorithmic computational simulations through a program designed to investigate and extend understanding in one of the most enduring questions in social choice research. Discusses solutions to this problem from each approach--analytic and…
Descriptors: Algorithms, Computation, Computer Oriented Programs, Computer Simulation

Bissett, Randall; Schneider, Bruce – Psychometrika, 1991
The algorithm developed by B. A. Schneider (1980) for analysis of paired comparisons of psychological intervals is replaced by one proposed by R. M. Johnson. Monte Carlo simulations of pairwise dissimilarities and pairwise conjoint effects show that Johnson's algorithm can provide good metric recovery. (SLD)
Descriptors: Algorithms, Comparative Analysis, Computer Simulation, Equations (Mathematics)

Schweizer, Karl – Multivariate Behavioral Research, 1991
A mathematical formula is introduced for the effect of integrating data. A method is then derived to eliminate the effect from correlations of variables, including mean composites, thus allowing for a clustering algorithm that requires allocation of variables according to the magnitude of their correlations. Examples illustrate the procedure. (SLD)
Descriptors: Algorithms, Classification, Cluster Analysis, Computer Simulation
Zeng, Lingjia; Bashaw, Wilbur L. – 1990
A joint maximum likelihood estimation algorithm, based on the partial compensatory multidimensional logistic model (PCML) proposed by L. Zeng (1989), is presented. The algorithm simultaneously estimates item difficulty parameters, the strength of each dimension, and individuals' abilities on each of the dimensions involved in arriving at a correct…
Descriptors: Ability Identification, Algorithms, Computer Simulation, Difficulty Level

Dreger, Ralph Mason; And Others – Multivariate Behavioral Research, 1988
Seven data sets (namely, clinical data on children) were subjected to clustering by seven algorithms--the B-coefficient, Linear Typal Analysis; elementary linkage analysis, Numerical Taxonomy System, Statistical Analysis System hierarchical clustering method, Taxonomy, and Bolz's Type Analysis. The little-known B-coefficient method compared…
Descriptors: Algorithms, Children, Clinical Diagnosis, Cluster Analysis

Reise, Steven P.; Due, Allan M. – Applied Psychological Measurement, 1991
Previous person-fit research is extended through explication of an unexplored model for generating aberrant response patterns. The proposed model is then implemented to investigate the influence of test properties on the aberrancy detection power of a person-fit statistic. Difficulties of aberrancy detection are discussed. (SLD)
Descriptors: Algorithms, Computer Simulation, Item Response Theory, Mathematical Models

Bockenholt, Ulf; Bockenholt, Ingo – Psychometrika, 1991
A reparameterization of a latent class model is presented to classify and scale nomial and ordered categorical choice data simultaneously. The model extension represents a nonhomogeneous population as a mixture of homogeneous subpopulations. Simulated data and data from a magazine preference survey of 347 college students illustrate the model.…
Descriptors: Algorithms, Classification, College Students, Computer Simulation

Kiiveri, H. T. – Psychometrika, 1987
Covariance structures associated with linear structural equation models are discussed. Algorithms for computing maximum likelihood estimates (namely, the EM algorithm) are reviewed. An example of using likelihood ratio tests based on complete and incomplete data to improve the fit of a model is given. (SLD)
Descriptors: Algorithms, Analysis of Covariance, Computer Simulation, Equations (Mathematics)

Liou, Michelle; Chang, Chih-Hsin – Psychometrika, 1992
An extension is proposed for the network algorithm introduced by C.R. Mehta and N.R. Patel to construct exact tail probabilities for testing the general hypothesis that item responses are distributed according to the Rasch model. A simulation study indicates the efficiency of the algorithm. (SLD)
Descriptors: Algorithms, Computer Simulation, Difficulty Level, Equations (Mathematics)

Rost, Jurgen – Applied Psychological Measurement, 1990
Combining Rasch and latent class models is presented as a way to overcome deficiencies and retain the positive features of both. An estimation algorithm is outlined, providing conditional maximum likelihood estimates of item parameters for each class. The model is illustrated with simulated data and real data (n=869 adults). (SLD)
Descriptors: Adults, Algorithms, Computer Simulation, Equations (Mathematics)

Muraki, Eiji – Applied Psychological Measurement, 1990
This study examined the application of the marginal maximum likelihood-EM algorithm to the parameter estimation problems of the normal ogive and logistic polytomous response models for Likert-type items. A rating scale model, based on F. Samejima's (1969) graded response model, was developed. (TJH)
Descriptors: Algorithms, Computer Simulation, Equations (Mathematics), Goodness of Fit
Previous Page | Next Page ยป
Pages: 1 | 2