NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hairui Yu; Suzanne E. Perumean-Chaney; Kathryn A. Kaiser – Journal of Statistics and Data Science Education, 2024
Missing data can significantly influence results of epidemiological studies. The National Health and Nutrition Examination Survey (NHANES) is a popular epidemiological dataset. We examined recent practices related to the prevalence and the reporting of the amount of missing data, the underlying mechanisms, and the methods used for handling missing…
Descriptors: Statistics Education, Data Science, Data Use, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Pieterman-Bos, Annelies; van Mil, Marc H. W. – Science & Education, 2023
Biomedical data science education faces the challenge of preparing students for conducting rigorous research with increasingly complex and large datasets. At the same time, philosophers of science face the challenge of making their expertise accessible for scientists in such a way that it can improve everyday research practice. Here, we…
Descriptors: Philosophy, Science Education, Scientific Principles, Data Science
Preel-Dumas, Camille; Hendra, Richard; Denison, Dakota – MDRC, 2023
This brief explores data science methods that workforce programs can use to predict participant success. With access to vast amounts of data on their programs, workforce training providers can leverage their management information systems (MIS) to understand and improve their programs' outcomes. By predicting which participants are at greater risk…
Descriptors: Labor Force Development, Programs, Prediction, Success