NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Williams, Hollis – Physics Education, 2022
Granular flows appear frequently in the natural world and in civil engineering applications. These flows can exhibit features which are surprising and counter-intuitive and are often used to test the limits of the classical continuum approximation for modelling of fluid flows. An important sub-class of the granular flows are the gravity-driven…
Descriptors: Science Instruction, Physics, Scientific Concepts, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Soares, A. A.; Cantão, R. F.; Pinheiro, J. B., Jr.; Castro, F. G. – Physics Education, 2022
We present an experiment designed to study standing waves in a tube with one closed end. Two smartphones are used, one to emit a sound signal with a chosen frequency and another equipped with a microphone to detect the sound pressure level inside the tube. Due to the finite diameter of the tube, the standing wave node (or antinode) appears…
Descriptors: Science Instruction, Science Experiments, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Dean; Liu, Lilan; Zhou, Shaona – Physics Teacher, 2020
Interest in smartphone-based learning, especially in the use of internal sensors in smartphones for physics experiments, is increasing rapidly. Internal sensors in smartphones such as acoustic sensor, optical sensor, and acceleration sensor can help researchers alleviate the problems including insufficient accuracy with low-cost equipment, high…
Descriptors: Physics, Science Instruction, Teaching Methods, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Madriz, Lorean; Cabrerizo, Franco M.; Vargas, Ronald – Journal of Chemical Education, 2021
In this communication, a remote experimental activity in chemical kinetics is described, taking into account the quantification based on the optical sensor of a smartphone. The objective pursued herein is to equip students with the appropriate tools and strategies required to empirically determine the parameters of the rate law including reaction…
Descriptors: Chemistry, Kinetics, Science Activities, Distance Education
Peer reviewed Peer reviewed
Direct linkDirect link
Kousloglou, Manolis; Molohidis, Anastasios; Nikolopoulou, Kleopatra; Hatzikraniotis, Euripides – Teaching Science, 2022
The natural sciences, by their very nature, are based on the exploration of the physical world, and digital mobile devices are considered appropriate to support this exploration (Suárez et al., 2018) since they offer the tools that make this investigation more accessible but also ubiquitous (Crompton et al., 2017). Inquiry-based learning is a…
Descriptors: Science Instruction, Inquiry, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Vollmer, Michael; Möllmann, Klaus-Peter – Physics Education, 2018
Recently, infrared cameras have become available as smartphone accessories. Being less expensive than regular infrared cameras they are readily affordable for schools and many teachers may even privately own one due to their potential to visualize all kinds of thermal phenomena in physics teaching. Any science teacher who wants to use such a…
Descriptors: Physics, Teaching Methods, Science Instruction, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2018
When measuring the speed of an object with a video camera, a correction may be needed for the time taken by the camera to acquire the image in each frame. Examples are given where the correction is quite significant.
Descriptors: Video Technology, Physics, Science Instruction, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Dagdeviren, Omur E. – Physics Education, 2018
Propagation of sound waves is one of the fundamental concepts in physics. Some of the properties of sound propagation such as attenuation of sound intensity with increasing distance are familiar to everybody from the experiences of daily life. However, the frequency dependence of sound propagation and the effect of acoustics in confined…
Descriptors: Physics, Science Instruction, Teaching Methods, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Yavuz, Ahmet; Temiz, Burak Kagan – Physics Education, 2016
In this paper, we propose an experiment for analysing harmonic motion using an iPhone's (or iPad's) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone's magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone's screen using the "Sensor Kinetics"…
Descriptors: Motion, Handheld Devices, Magnets, Computer Graphics
Peer reviewed Peer reviewed
Direct linkDirect link
Monteiro, Martín; Martí, Arturo C. – Physics Education, 2017
We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…
Descriptors: Handheld Devices, Telecommunications, Motion, Aviation Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Ayop, Shahrul Kadri – Physics Teacher, 2017
The iPhone 6 introduced a new feature of recording video in Slo-Mo mode at 240 fps (4.17 ms interval). This great capability when integrated with video analysis freeware such as Tracker offers in-depth exploration for physical phenomena such as collisions that occur in a very short duration of time. This article discusses one such usage in…
Descriptors: Handheld Devices, Telecommunications, Video Technology, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, Hilary; Underwood, Joshua; Fitzpatrick, Geraldine; Luckin, Rosemary – Educational Technology & Society, 2009
Engaging students in science learning can be challenging, and incorporating new forms of technology into science has been shown to provide creative learning experiences. However most technology enhanced learning and e-Science experiences to date have been designed and run by researchers. There is significant challenge in moving these experiences…
Descriptors: Cooperative Learning, Science Instruction, Research Projects, Environmental Education