NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M.; Stapleton, Laura M. – Educational Psychology Review, 2016
Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for this paper are to (1) raise awareness of the…
Descriptors: Hierarchical Linear Modeling, Statistical Analysis, Sample Size, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Wagler, Amy E. – Journal of Educational and Behavioral Statistics, 2014
Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…
Descriptors: Hierarchical Linear Modeling, Cluster Grouping, Heterogeneous Grouping, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Rhoads, Christopher – Journal of Research on Educational Effectiveness, 2016
Experimental evaluations that involve the educational system usually involve a hierarchical structure (students are nested within classrooms that are nested within schools, etc.). Concerns about contamination, where research subjects receive certain features of an intervention intended for subjects in a different experimental group, have often led…
Descriptors: Educational Experiments, Error of Measurement, Research Design, Statistical Analysis