NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 30 results Save | Export
Longford, Nicholas T. – 1993
An approximation to the likelihood for the generalized linear models with random coefficients is derived and is the basis for an approximate Fisher scoring algorithm. The method is illustrated on the logistic regression model for one-way classification, but it has an extension to the class of generalized linear models and to more complex data…
Descriptors: Algorithms, Estimation (Mathematics), Maximum Likelihood Statistics, Scoring
Peer reviewed Peer reviewed
Winsberg, Suzanne; Carroll, J. Douglas – Psychometrika, 1989
An Extended Two-Way Euclidean Multidimensional Scaling (MDS) model that assumes both common and specific dimensions is described and contrasted with the "standard" (Two-Way) MDS model. Illustrations with both artificial and real data on the judged similarity of nations are provided. (TJH)
Descriptors: Algorithms, Chi Square, Maximum Likelihood Statistics, Multidimensional Scaling
Peer reviewed Peer reviewed
Tisak, John; Meredith, William – Psychometrika, 1989
A longitudinal factor analysis model that is entirely exploratory is proposed for use with multiple populations. Factorial collapse, period/practice effects, and an invariant and/or stationary factor pattern are allowed. The model is formulated stochastically and implemented via a stage-wise EM algorithm. (TJH)
Descriptors: Algorithms, Factor Analysis, Longitudinal Studies, Maximum Likelihood Statistics
Rigdon, Steven E.; Tsutakawa, Robert K. – 1981
Estimation of ability and item parameters in latent trait models is discussed. When both ability and item parameters are considered fixed but unknown, the method of maximum likelihood for the logistic or probit models is well known. Discussed are techniques for estimating ability and item parameters when the ability parameters or item parameters…
Descriptors: Algorithms, Latent Trait Theory, Mathematical Formulas, Mathematical Models
Woodruff, David J.; Hanson, Bradley A. – 1996
This paper presents a detailed description of maximum parameter estimation for item response models using the general EM algorithm. In this paper the models are specified using a univariate discrete latent ability variable. When the latent ability variable is discrete the distribution of the observed item responses is a finite mixture, and the EM…
Descriptors: Ability, Algorithms, Estimation (Mathematics), Item Response Theory
Peer reviewed Peer reviewed
Maris, Eric; And Others – Psychometrika, 1996
Generalizing Boolean matrix decomposition to a larger class of matrix decomposition models is demonstrated, and probability matrix decomposition (PMD) models are introduced as a probabilistic version of the larger class. An algorithm is presented for the computation of maximum likelihood and maximum a posteriori estimates of the parameters of PMD…
Descriptors: Algorithms, Diagnostic Tests, Estimation (Mathematics), Matrices
Peer reviewed Peer reviewed
Kiers, Henk A. L. – Psychometrika, 1997
A general approach for fitting a model to a data matrix by weighted least squares (WLS) is studied. The approach consists of iteratively performing steps of existing algorithms for ordinary least squares fitting of the same model and is based on maximizing a function that majorizes WLS loss function. (Author/SLD)
Descriptors: Algorithms, Goodness of Fit, Least Squares Statistics, Mathematical Models
van der Linden, Wim J. – 1997
The case of adaptive testing under a multidimensional logistic response model is addressed. An adaptive algorithm is proposed that minimizes the (asymptotic) variance of the maximum-likelihood (ML) estimator of a linear combination of abilities of interest. The item selection criterion is a simple expression in closed form. In addition, it is…
Descriptors: Ability, Adaptive Testing, Algorithms, Computer Assisted Testing
Peer reviewed Peer reviewed
Young, Martin R.; DeSarbo, Wayne S. – Psychometrika, 1995
A new parametric maximum likelihood procedure is proposed for estimating ultrametric trees for the analysis of conditional rank order proximity data. Technical aspects of the model and the estimation algorithm are discussed, and Monte Carlo results illustrate its application. A consumer psychology application is also examined. (SLD)
Descriptors: Algorithms, Consumer Economics, Estimation (Mathematics), Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Jedidi, Kamel; DeSarbo, Wayne S. – Psychometrika, 1991
A stochastic multidimensional scaling procedure is presented for analysis of three-mode, three-way pick any/"J" data. The procedure fits both vector and ideal-point models and characterizes the effect of situations by a set of dimension weights. An application in the area of consumer psychology is discussed. (SLD)
Descriptors: Algorithms, Consumer Economics, Equations (Mathematics), Estimation (Mathematics)
Kreft, Ita G. G.; Kim, Kyung-Sung – 1990
A detailed comparison of four computer programs for analyzing hierarchical linear models is presented. The programs are: VARCL; HLM; ML2; and GENMOD. All are compiled, stand-alone, and specialized. All use maximum likelihood (ML) estimation for decomposition of the variance into different parts; and in all cases, computing the ML estimates…
Descriptors: Algorithms, Comparative Analysis, Computer Software, Computer Software Evaluation
Peer reviewed Peer reviewed
Duncan, Terry E.; Duncan, Susan C.; Li, Fuzhong – Structural Equation Modeling, 1998
Presents an application of latent growth curve methodology to the analysis of longitudinal developmental change in alcohol consumption of 586 young adults, illustrating three approaches to the analysis of missing data: (1) multiple-sample structural equation modeling procedures; (2) raw maximum likelihood analyses; and (3) multiple modeling and…
Descriptors: Algorithms, Change, Comparative Analysis, Drinking
Peer reviewed Peer reviewed
de Leeuw, Jan; Kreft, Ita G. G. – Journal of Educational and Behavioral Statistics, 1995
Practical problems with multilevel techniques are discussed. These problems relate to terminology, computer programs employing different algorithms, and interpretations of the coefficients in either one or two steps. The usefulness of hierarchical linear models (HLMs) in common situations in educational research is explored. While elegant, HLMs…
Descriptors: Algorithms, Computer Software, Definitions, Educational Research
Peer reviewed Peer reviewed
Kelderman, Henk – Psychometrika, 1992
Describes algorithms used in the computer program LOGIMO for obtaining maximum likelihood estimates of the parameters in loglinear models. These algorithms are also useful for the analysis of loglinear item-response theory models. Presents modified versions of the iterative proportional fitting and Newton-Raphson algorithms. Simulated data…
Descriptors: Algorithms, Computer Simulation, Equations (Mathematics), Estimation (Mathematics)
Zeng, Lingjia; Bashaw, Wilbur L. – 1990
A joint maximum likelihood estimation algorithm, based on the partial compensatory multidimensional logistic model (PCML) proposed by L. Zeng (1989), is presented. The algorithm simultaneously estimates item difficulty parameters, the strength of each dimension, and individuals' abilities on each of the dimensions involved in arriving at a correct…
Descriptors: Ability Identification, Algorithms, Computer Simulation, Difficulty Level
Previous Page | Next Page ยป
Pages: 1  |  2