NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Practitioners1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gorney, Kylie; Wollack, James A. – Journal of Educational Measurement, 2022
Detection methods for item preknowledge are often evaluated in simulation studies where models are used to generate the data. To ensure the reliability of such methods, it is crucial that these models are able to accurately represent situations that are encountered in practice. The purpose of this article is to provide a critical analysis of…
Descriptors: Prior Learning, Simulation, Models, Reaction Time
Peer reviewed Peer reviewed
Direct linkDirect link
Harikesh Singh; Li-Minn Ang; Dipak Paudyal; Mauricio Acuna; Prashant Kumar Srivastava; Sanjeev Kumar Srivastava – Technology, Knowledge and Learning, 2025
Wildfires pose significant environmental threats in Australia, impacting ecosystems, human lives, and property. This review article provides a comprehensive analysis of various empirical and dynamic wildfire simulators alongside machine learning (ML) techniques employed for wildfire prediction in Australia. The study examines the effectiveness of…
Descriptors: Artificial Intelligence, Computer Software, Computer Simulation, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Michelle Cheong – Journal of Computer Assisted Learning, 2025
Background: Increasingly, students are using ChatGPT to assist them in learning and even completing their assessments, raising concerns of academic integrity and loss of critical thinking skills. Many articles suggested educators redesign assessments that are more 'Generative-AI-resistant' and to focus on assessing students on higher order…
Descriptors: Artificial Intelligence, Performance Based Assessment, Spreadsheets, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Nicolas J. Tanchuk; Rebecca M. Taylor – Educational Theory, 2025
AI tutors are promised to expand access to personalized learning, improving student achievement and addressing disparities in resources available to students across socioeconomic contexts. The rapid development and introduction of AI tutors raises fundamental questions of epistemic trust in education. What criteria should guide students' critical…
Descriptors: Individualized Instruction, Artificial Intelligence, Technology Uses in Education, Tutors
Child, Simon; Shaw, Stuart – Research Matters, 2023
This article provides a conceptual framework for considering both the theoretical and methodological factors that underpin the successful validation of a competency framework. Drawing on educational assessment literature, this article argues that a valid competency framework relates to an interpretive judgement of the credibility of the claims…
Descriptors: Competence, Validity, Accuracy, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doewes, Afrizal; Kurdhi, Nughthoh Arfawi; Saxena, Akrati – International Educational Data Mining Society, 2023
Automated Essay Scoring (AES) tools aim to improve the efficiency and consistency of essay scoring by using machine learning algorithms. In the existing research work on this topic, most researchers agree that human-automated score agreement remains the benchmark for assessing the accuracy of machine-generated scores. To measure the performance of…
Descriptors: Essays, Writing Evaluation, Evaluators, Accuracy
Egamaria Alacam; Craig K. Enders; Han Du; Brian T. Keller – Grantee Submission, 2023
Composite scores are an exceptionally important psychometric tool for behavioral science research applications. A prototypical example occurs with self-report data, where researchers routinely use questionnaires with multiple items that tap into different features of a target construct. Item-level missing data are endemic to composite score…
Descriptors: Regression (Statistics), Scores, Psychometrics, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Matayoshi, Jeffrey; Cosyn, Eric; Uzun, Hasan – International Journal of Artificial Intelligence in Education, 2021
Many recent studies have looked at the viability of applying recurrent neural networks (RNNs) to educational data. In most cases, this is done by comparing their performance to existing models in the artificial intelligence in education (AIED) and educational data mining (EDM) fields. While there is increasing evidence that, in many situations,…
Descriptors: Artificial Intelligence, Data Analysis, Student Evaluation, Adaptive Testing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Badrinath, Anirudhan; Wang, Frederic; Pardos, Zachary – International Educational Data Mining Society, 2021
Bayesian Knowledge Tracing, a model used for cognitive mastery estimation, has been a hallmark of adaptive learning research and an integral component of deployed intelligent tutoring systems (ITS). In this paper, we provide a brief history of knowledge tracing model research and introduce pyBKT, an accessible and computationally efficient library…
Descriptors: Models, Markov Processes, Mathematics, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Rüttenauer, Tobias – Sociological Methods & Research, 2022
Spatial regression models provide the opportunity to analyze spatial data and spatial processes. Yet, several model specifications can be used, all assuming different types of spatial dependence. This study summarizes the most commonly used spatial regression models and offers a comparison of their performance by using Monte Carlo experiments. In…
Descriptors: Models, Monte Carlo Methods, Social Science Research, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Van Norman, Ethan R.; Nelson, Peter M.; Klingbeil, David A.; Cormier, Damien C.; Lekwa, Adam J. – Contemporary School Psychology, 2019
Recent research suggests using multiple screening measures to identify students at risk for academic difficulties may decrease the number of students incorrectly identified as such. Gated frameworks in which students that score below a cut-score on an initial measure are assessed with a follow-up measure have been recommended. Researchers have…
Descriptors: Screening Tests, Models, Diagnostic Tests, Accuracy
Jacob M. Schauer; Kaitlyn G. Fitzgerald; Sarah Peko-Spicer; Mena C. R. Whalen; Rrita Zejnullahi; Larry V. Hedges – Grantee Submission, 2021
Several programs of research have sought to assess the replicability of scientific findings in different fields, including economics and psychology. These programs attempt to replicate several findings and use the results to say something about large-scale patterns of replicability in a field. However, little work has been done to understand the…
Descriptors: Statistical Analysis, Research Methodology, Evaluation Methods, Replication (Evaluation)
Peer reviewed Peer reviewed
Direct linkDirect link
Tourangeau, Roger – Quality Assurance in Education: An International Perspective, 2018
Purpose: This paper aims to examine the cognitive processes involved in answering survey questions. It also briefly discusses how the cognitive viewpoint has been challenged by other approaches (such as conversational analysis). Design/methodology/approach: The paper reviews the major components of the response process and summarizes work…
Descriptors: Surveys, Cognitive Processes, Error of Measurement, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Ravand, Hamdollah; Baghaei, Purya – International Journal of Testing, 2020
More than three decades after their introduction, diagnostic classification models (DCM) do not seem to have been implemented in educational systems for the purposes they were devised. Most DCM research is either methodological for model development and refinement or retrofitting to existing nondiagnostic tests and, in the latter case, basically…
Descriptors: Classification, Models, Diagnostic Tests, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2019
In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in…
Descriptors: Item Response Theory, Error of Measurement, Scoring, Inferences
Previous Page | Next Page »
Pages: 1  |  2