Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 2 |
Descriptor
Source
Psychometrika | 6 |
Applied Psychological… | 2 |
Multivariate Behavioral… | 2 |
Educational and Psychological… | 1 |
Journal of Educational… | 1 |
Structural Equation Modeling | 1 |
Structural Equation Modeling:… | 1 |
Author
Cudeck, Robert | 2 |
DeSarbo, Wayne S. | 2 |
Donoghue, John R. | 2 |
Hutchinson, J. Wesley | 2 |
Bacon, Donald R. | 1 |
Beasley, T. Mark | 1 |
Bissett, Randall | 1 |
Browne, Michael W. | 1 |
Chang, Shun-Wen | 1 |
Daxun Wang | 1 |
Dongbo Tu | 1 |
More ▼ |
Publication Type
Reports - Evaluative | 20 |
Journal Articles | 14 |
Speeches/Meeting Papers | 6 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
What Works Clearinghouse Rating
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Zhichen Guo; Daxun Wang; Yan Cai; Dongbo Tu – Educational and Psychological Measurement, 2024
Forced-choice (FC) measures have been widely used in many personality or attitude tests as an alternative to rating scales, which employ comparative rather than absolute judgments. Several response biases, such as social desirability, response styles, and acquiescence bias, can be reduced effectively. Another type of data linked with comparative…
Descriptors: Item Response Theory, Models, Reaction Time, Measurement Techniques
Finch, Holmes; Huynh, Huynh – 2000
One set of approaches to the problem of clustering with dichotomous data in cluster analysis (CA) was studied. The techniques developed for clustering with binary data involve calculating distances between observations based on the variables and then applying one of the standard CA algorithms to these distances. One of the groups of distances that…
Descriptors: Algorithms, Cluster Analysis, Monte Carlo Methods, Responses

Bacon, Donald R. – Structural Equation Modeling, 2001
Evaluated the performance of several alternative cluster analytic approaches to initial model specification using population parameter analyses and a Monte Carlo simulation. Of the six cluster approaches evaluated, the one using the correlations of item correlations as a proximity metric and average linking as a clustering algorithm performed the…
Descriptors: Algorithms, Cluster Analysis, Correlation, Mathematical Models
Donoghue, John R. – 1995
A Monte Carlo study compared the usefulness of six variable weighting methods for cluster analysis. Data were 100 bivariate observations from 2 subgroups, generated according to a finite normal mixture model. Subgroup size, within-group correlation, within-group variance, and distance between subgroup centroids were manipulated. Of the clustering…
Descriptors: Algorithms, Cluster Analysis, Comparative Analysis, Correlation
Lau, C. Allen; Wang, Tianyou – 1999
A study was conducted to extend the sequential probability ratio testing (SPRT) procedure with the polytomous model under some practical constraints in computerized classification testing (CCT), such as methods to control item exposure rate, and to study the effects of other variables, including item information algorithms, test difficulties, item…
Descriptors: Algorithms, Computer Assisted Testing, Difficulty Level, Item Banks

Hutchinson, J. Wesley – Psychometrika, 1989
A Monte Carlo simulation and applications to eight sets of proximity data are presented to support the practical utility of a network scaling algorithm (NETSCAL)--NETwork SCALing. The algorithm determines which vertices within a network are directly connected by an arc and estimates the length of each arc. (TJH)
Descriptors: Algorithms, Diagrams, Monte Carlo Methods, Network Analysis

Hutchinson, J. Wesley; Mungale, Amitabh – Psychometrika, 1997
A nonmetric algorithm, pairwise partitioning, is developed to identify feature-based similarity structures. Presents theorems about the validity of the features identified by the algorithm, and reports results of Monte Carlo simulations that estimate the probabilities of identifying valid features for different feature structures and amounts of…
Descriptors: Algorithms, Error of Measurement, Estimation (Mathematics), Identification
Donoghue, John R. – 1994
Monte Carlo studies investigated effects of within-group covariance structure on subgroup recovery by several widely used hierarchical clustering methods. In Study 1, subgroup size, within-group correlation, within-group variance, and distance between subgroup centroids were manipulated. All clustering methods were strongly affected by…
Descriptors: Algorithms, Analysis of Covariance, Cluster Analysis, Correlation

DeSarbo, Wayne S.; And Others – Psychometrika, 1989
A method is presented that simultaneously estimates cluster membership and corresponding regression functions for a sample of observations or subjects. This methodology is presented with the simulated annealing-based algorithm. A set of Monte Carlo analyses is included to demonstrate the performance of the algorithm. (SLD)
Descriptors: Algorithms, Cluster Analysis, Estimation (Mathematics), Least Squares Statistics

Young, Martin R.; DeSarbo, Wayne S. – Psychometrika, 1995
A new parametric maximum likelihood procedure is proposed for estimating ultrametric trees for the analysis of conditional rank order proximity data. Technical aspects of the model and the estimation algorithm are discussed, and Monte Carlo results illustrate its application. A consumer psychology application is also examined. (SLD)
Descriptors: Algorithms, Consumer Economics, Estimation (Mathematics), Maximum Likelihood Statistics

Price, Lydia J. – Multivariate Behavioral Research, 1993
The ability of the NORMIX algorithm to recover overlapping population structures was compared to the OVERCLUS procedure and another clustering procedure in a Monte Carlo study. NORMIX is found to be more accurate than other procedures in recovering overlapping population structure when appropriate implementation options are specified. (SLD)
Descriptors: Algorithms, Classification, Cluster Analysis, Comparative Analysis

Bissett, Randall; Schneider, Bruce – Psychometrika, 1991
The algorithm developed by B. A. Schneider (1980) for analysis of paired comparisons of psychological intervals is replaced by one proposed by R. M. Johnson. Monte Carlo simulations of pairwise dissimilarities and pairwise conjoint effects show that Johnson's algorithm can provide good metric recovery. (SLD)
Descriptors: Algorithms, Comparative Analysis, Computer Simulation, Equations (Mathematics)

Cudeck, Robert – Journal of Educational Statistics, 1991
Two algorithms that automatically select subsets of variables (PACE algorithm) and reference variables (Fabin estimators), respectively, used for the noniterative estimators are presented. The PACE algorithm is based on a nonsymmetric matrix sweep operator. A Monte Carlo experiment compares the relative performance of these estimators and others.…
Descriptors: Algorithms, Comparative Analysis, Equations (Mathematics), Estimation (Mathematics)

Schweizer, Karl – Multivariate Behavioral Research, 1991
A mathematical formula is introduced for the effect of integrating data. A method is then derived to eliminate the effect from correlations of variables, including mean composites, thus allowing for a clustering algorithm that requires allocation of variables according to the magnitude of their correlations. Examples illustrate the procedure. (SLD)
Descriptors: Algorithms, Classification, Cluster Analysis, Computer Simulation
Previous Page | Next Page ยป
Pages: 1 | 2