Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 23 |
Descriptor
Probability | 32 |
Statistical Inference | 32 |
Bayesian Statistics | 12 |
Statistical Analysis | 8 |
Statistical Significance | 8 |
Hypothesis Testing | 7 |
Computation | 5 |
Models | 5 |
Prediction | 5 |
Comparative Analysis | 4 |
Evaluation Methods | 4 |
More ▼ |
Source
Author
Mislevy, Robert J. | 3 |
Griffiths, Thomas L. | 2 |
Kazak, Sibel | 2 |
Algina, James | 1 |
Anthony, James C. | 1 |
Arnold, Barry C. | 1 |
Bai, Haiyan | 1 |
Beath, Ken J. | 1 |
Beland, Anne | 1 |
Blei, David M. | 1 |
Bowers, Jeffrey S. | 1 |
More ▼ |
Publication Type
Reports - Evaluative | 32 |
Journal Articles | 27 |
Opinion Papers | 2 |
Speeches/Meeting Papers | 2 |
Information Analyses | 1 |
Education Level
Higher Education | 2 |
Early Childhood Education | 1 |
Elementary Secondary Education | 1 |
Grade 8 | 1 |
Kindergarten | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Audience
Researchers | 2 |
Location
India | 1 |
Massachusetts | 1 |
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Widaman, Keith F. – Educational and Psychological Measurement, 2023
The import or force of the result of a statistical test has long been portrayed as consistent with deductive reasoning. The simplest form of deductive argument has a first premise with conditional form, such as p[right arrow]q, which means that "if p is true, then q must be true." Given the first premise, one can either affirm or deny…
Descriptors: Hypothesis Testing, Statistical Analysis, Logical Thinking, Probability
Shi, Yongren; Cameron, Christopher J.; Heckathorn, Douglas D. – Sociological Methods & Research, 2019
Respondent-driven sampling (RDS), a link-tracing sampling and inference method for studying hard-to-reach populations, has been shown to produce asymptotically unbiased population estimates when its assumptions are satisfied. However, some of the assumptions are prohibitively difficult to reach in the field, and the violation of a crucial…
Descriptors: Statistical Inference, Bias, Recruitment, Sampling
Kazak, Sibel; Pratt, Dave – Research in Mathematics Education, 2021
We examine the challenges of teaching probability through the use of modelling. We argue how an integrated modelling approach might facilitate a coordinated understanding of distribution by marrying theoretical and data-oriented perspectives and present probability as more connected to the social lives of modern-day students. Research is, however,…
Descriptors: Teaching Methods, Mathematics Instruction, Faculty Development, Probability
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Diwakar, Rekha – Practical Assessment, Research & Evaluation, 2017
Many existing methods of statistical inference and analysis rely heavily on the assumption that the data are normally distributed. However, the normality assumption is not fulfilled when dealing with data which does not contain negative values or are otherwise skewed--a common occurrence in diverse disciplines such as finance, economics, political…
Descriptors: Statistical Inference, Statistical Distributions, Research, Foreign Countries
Kaimi, Irene – Teaching Statistics: An International Journal for Teachers, 2015
This articles argues in favour of a recently introduced approach to statistical inference which focuses on understanding the data generating process. A comprehensive example supports the discussion.
Descriptors: Statistical Inference, Statistical Data, Data Collection, Probability
Nicholson, James; Ridgway, Jim – Statistics Education Research Journal, 2017
White and Gorard make important and relevant criticisms of some of the methods commonly used in social science research, but go further by criticising the logical basis for inferential statistical tests. This paper comments briefly on matters we broadly agree on with them and more fully on matters where we disagree. We agree that too little…
Descriptors: Statistical Inference, Statistics, Teaching Methods, Criticism
White, Patrick; Gorard, Stephen – Statistics Education Research Journal, 2017
Recent concerns about a shortage of capacity for statistical and numerical analysis skills among social science students and researchers have prompted a range of initiatives aiming to improve teaching in this area. However, these projects have rarely re-evaluated the content of what is taught to students and have instead focussed primarily on…
Descriptors: Statistical Inference, Statistics, Teaching Methods, Social Science Research
Zhou, Xiang; Xie, Yu – Sociological Methods & Research, 2016
Since the seminal introduction of the propensity score (PS) by Rosenbaum and Rubin, PS-based methods have been widely used for drawing causal inferences in the behavioral and social sciences. However, the PS approach depends on the ignorability assumption: there are no unobserved confounders once observed covariates are taken into account. For…
Descriptors: Probability, Statistical Inference, Comparative Analysis, Longitudinal Studies
Neale, Dave – Oxford Review of Education, 2015
Recently, Stephen Gorard has outlined strong objections to the use of significance testing in social research. He has argued, first, that as the samples used in social research are almost always non-random it is not possible to use inferential statistical techniques and, second, that even if a truly random sample were achieved, the logic behind…
Descriptors: Statistical Significance, Statistical Analysis, Sampling, Probability
Beath, Ken J. – Research Synthesis Methods, 2014
When performing a meta-analysis unexplained variation above that predicted by within study variation is usually modeled by a random effect. However, in some cases, this is not sufficient to explain all the variation because of outlier or unusual studies. A previously described method is to define an outlier as a study requiring a higher random…
Descriptors: Mixed Methods Research, Robustness (Statistics), Meta Analysis, Prediction
Lee, Michael D.; Pooley, James P. – Psychological Review, 2013
The scale-invariant memory, perception, and learning (SIMPLE) model developed by Brown, Neath, and Chater (2007) formalizes the theoretical idea that scale invariance is an important organizing principle across numerous cognitive domains and has made an influential contribution to the literature dealing with modeling human memory. In the context…
Descriptors: Recall (Psychology), Memory, Models, Equations (Mathematics)
Bai, Haiyan – Educational Psychology Review, 2011
The central role of the propensity score analysis (PSA) in observational studies is for causal inference; as such, PSA is often used for making causal claims in research articles. However, there are still some issues for researchers to consider when making claims of causality using PSA results. This summary first briefly reviews PSA, followed by…
Descriptors: Researchers, Research Reports, Journal Articles, Probability
Kaplan, David; Chen, Cassie J. S. – Society for Research on Educational Effectiveness, 2011
Propensity score analysis (PSA) has been used in a variety of settings, such as education, epidemiology, and sociology. Most typically, propensity score analysis has been implemented within the conventional frequentist perspective of statistics. This perspective, as is well known, does not account for uncertainty in either the parameters of the…
Descriptors: Bayesian Statistics, Probability, Statistical Analysis, Statistical Inference
Algina, James; Keselman, H. J.; Penfield, Randall D. – Educational and Psychological Measurement, 2010
The increase in the squared multiple correlation coefficient ([delta]R[superscript 2]) associated with a variable in a regression equation is a commonly used measure of importance in regression analysis. Algina, Keselman, and Penfield found that intervals based on asymptotic principles were typically very inaccurate, even though the sample size…
Descriptors: Computation, Statistical Analysis, Correlation, Statistical Inference