NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Elina Palmgren; Tapio Rasa – Science & Education, 2024
Modelling roles of mathematics in physics has proved to be a difficult task, with previous models of the interplay between the two disciplines mainly focusing on mathematical modelling and problem solving. However, to convey a realistic view of physics as a field of science to our students, we need to do more than train them to become fluent in…
Descriptors: Physics, Mathematical Models, Science Instruction, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Erol, Mustafa; Oflaz, Özlem – Electronic Journal for Research in Science & Mathematics Education, 2020
In contrast to the determinist and non-discrete structure of classical physical concepts, the probabilistic and discrete/quantised structure of quantum physics embeds certain difficulties in deeper understanding and teaching activities. In this study, in order to understand and to teach the concept of quantization more effectively, a clear analogy…
Descriptors: Teaching Methods, Science Instruction, Quantum Mechanics, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Frazer, Laszlo; Higginbotham, Heather F.; Bell, Toby D. M.; Funston, Alison M. – Journal of Chemical Education, 2020
Analysis of stochastic processes can be used to engender critical thinking. Quantum dots have a reversible, stochastic transition between luminescent and nonluminescent states. The luminescence intermittency is known as blinking and is not evident from ensemble measurements. In order to stimulate critical thinking, students design, perform, and…
Descriptors: Teaching Methods, Critical Thinking, Science Instruction, Interdisciplinary Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Stapleton, Andrew J. – Cultural Studies of Science Education, 2018
In response to the authors, I demonstrate how threshold concepts offer a means to both contextualise teaching and learning of quantum physics and help transform students into the culture of physics, and as a way to identify particularly troublesome concepts within quantum physics. By drawing parallels from my own doctoral research in another area…
Descriptors: Quantum Mechanics, Physics, Science Education, Imagery
Peer reviewed Peer reviewed
Direct linkDirect link
Robinett, R. W. – European Journal of Physics, 2010
We examine the Stark effect (the second-order shifts in the energy spectrum due to an external constant force) for two one-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z greater than 0 and V(z) = [infinity] for z less than 0) and the symmetric linear potential…
Descriptors: Computation, Energy, College Science, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Quijas, P. C. Garcia; Aguilar, L. M. Arevalo – European Journal of Physics, 2007
Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary…
Descriptors: Quantum Mechanics, Physics, Misconceptions, Science Education