Publication Date
In 2025 | 1 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 14 |
Since 2016 (last 10 years) | 25 |
Since 2006 (last 20 years) | 148 |
Descriptor
Regression (Statistics) | 278 |
Models | 152 |
Mathematical Models | 96 |
Equations (Mathematics) | 57 |
Comparative Analysis | 42 |
Estimation (Mathematics) | 40 |
Research Methodology | 34 |
Statistical Analysis | 34 |
Correlation | 33 |
Predictor Variables | 30 |
Factor Analysis | 28 |
More ▼ |
Source
Author
Publication Type
Education Level
Location
California | 4 |
Netherlands | 4 |
United States | 4 |
Canada | 3 |
Australia | 2 |
China | 2 |
Florida | 2 |
Oregon | 2 |
Spain | 2 |
Texas | 2 |
United Kingdom | 2 |
More ▼ |
Laws, Policies, & Programs
Education Consolidation… | 1 |
Individuals with Disabilities… | 1 |
Temporary Assistance for… | 1 |
Voting Rights Act 1965 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 1 |
Sang-June Park; Youjae Yi – Journal of Educational and Behavioral Statistics, 2024
Previous research explicates ordinal and disordinal interactions through the concept of the "crossover point." This point is determined via simple regression models of a focal predictor at specific moderator values and signifies the intersection of these models. An interaction effect is labeled as disordinal (or ordinal) when the…
Descriptors: Interaction, Predictor Variables, Causal Models, Mathematical Models
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Michael Kane – ETS Research Report Series, 2023
Linear functional relationships are intended to be symmetric and therefore cannot generally be accurately estimated using ordinary least squares regression equations. Orthogonal regression (OR) models allow for errors in both "Y" and "X" and therefore can provide symmetric estimates of these relationships. The most…
Descriptors: Factor Analysis, Regression (Statistics), Mathematical Models, Relationship

Kenneth A. Frank; Qinyun Lin; Spiro J. Maroulis – Grantee Submission, 2024
In the complex world of educational policy, causal inferences will be debated. As we review non-experimental designs in educational policy, we focus on how to clarify and focus the terms of debate. We begin by presenting the potential outcomes/counterfactual framework and then describe approximations to the counterfactual generated from the…
Descriptors: Causal Models, Statistical Inference, Observation, Educational Policy
Sy Han Chiou; Gongjun Xu; Jun Yan; Chiung-Yu Huang – Grantee Submission, 2023
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events,…
Descriptors: Data Analysis, Computer Software, Regression (Statistics), Models
Michael Schultz – Sociological Methods & Research, 2024
This paper presents a model of recurrent multinomial sequences. Though there exists a quite considerable literature on modeling autocorrelation in numerical data and sequences of categorical outcomes, there is currently no systematic method of modeling patterns of recurrence in categorical sequences. This paper develops a means of discovering…
Descriptors: Research Methodology, Sequential Approach, Models, Markov Processes
William R. Dardick; Jeffrey R. Harring – Journal of Educational and Behavioral Statistics, 2025
Simulation studies are the basic tools of quantitative methodologists used to obtain empirical solutions to statistical problems that may be impossible to derive through direct mathematical computations. The successful execution of many simulation studies relies on the accurate generation of correlated multivariate data that adhere to a particular…
Descriptors: Statistics, Statistics Education, Problem Solving, Multivariate Analysis
Long, J. Scott; Mustillo, Sarah A. – Sociological Methods & Research, 2021
Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in…
Descriptors: Regression (Statistics), Comparative Analysis, Probability, Groups
Angrist, Joshua – National Bureau of Economic Research, 2022
The view that empirical strategies in economics should be transparent and credible now goes almost without saying. The local average treatment effects (LATE) framework for causal inference helped make this so. The LATE theorem tells us for whom particular instrumental variables (IV) and regression discontinuity estimates are valid. This lecture…
Descriptors: Economics, Statistical Analysis, Causal Models, Regression (Statistics)
Bloome, Deirdre; Schrage, Daniel – Sociological Methods & Research, 2021
Causal analyses typically focus on average treatment effects. Yet for substantive research on topics like inequality, interest extends to treatments' distributional consequences. When individuals differ in their responses to treatment, three types of inequality may result. Treatment may shape inequalities between subgroups defined by pretreatment…
Descriptors: Regression (Statistics), Outcomes of Treatment, Statistical Analysis, Correlation
Egamaria Alacam; Craig K. Enders; Han Du; Brian T. Keller – Grantee Submission, 2023
Composite scores are an exceptionally important psychometric tool for behavioral science research applications. A prototypical example occurs with self-report data, where researchers routinely use questionnaires with multiple items that tap into different features of a target construct. Item-level missing data are endemic to composite score…
Descriptors: Regression (Statistics), Scores, Psychometrics, Test Items
Rüttenauer, Tobias – Sociological Methods & Research, 2022
Spatial regression models provide the opportunity to analyze spatial data and spatial processes. Yet, several model specifications can be used, all assuming different types of spatial dependence. This study summarizes the most commonly used spatial regression models and offers a comparison of their performance by using Monte Carlo experiments. In…
Descriptors: Models, Monte Carlo Methods, Social Science Research, Data Analysis
Elwert, Felix; Pfeffer, Fabian T. – Sociological Methods & Research, 2022
Conventional advice discourages controlling for postoutcome variables in regression analysis. By contrast, we show that controlling for commonly available postoutcome (i.e., future) values of the treatment variable can help detect, reduce, and even remove omitted variable bias (unobserved confounding). The premise is that the same unobserved…
Descriptors: Bias, Regression (Statistics), Evaluation Methods, Research
Theobald, Elli J.; Aikens, Melissa; Eddy, Sarah; Jordt, Hannah – Physical Review Physics Education Research, 2019
A common goal in discipline-based education research (DBER) is to determine how to improve student outcomes. Linear regression is a common technique used to test hypotheses about the effects of interventions on continuous outcomes (such as exam score) as well as control for student nonequivalence in quasirandom experimental designs. (In…
Descriptors: Educational Research, Regression (Statistics), Outcomes of Education, Statistical Analysis
Bucca, Mauricio; Urbina, Daniela R. – Sociological Methods & Research, 2021
Log-linear models for contingency tables are a key tool for the study of categorical inequalities in sociology. However, the conventional approach to model selection and specification suffers from at least two limitations: reliance on oftentimes equivocal diagnostics yielded by fit statistics, and the inability to identify patterns of association…
Descriptors: Foreign Countries, Mathematical Models, Tables (Data), Regression (Statistics)