Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 20 |
Descriptor
Source
Author
Fan, Xitao | 4 |
Bentler, Peter M. | 3 |
Hancock, Gregory R. | 3 |
Kim, Kevin H. | 3 |
Lee, Sik-Yum | 2 |
Nevitt, Jonathan | 2 |
Song, Xin-Yuan | 2 |
Wang, Lin | 2 |
Anderson, Ronald D. | 1 |
Bandalos, Deborah L. | 1 |
Bruno D. Zumbo | 1 |
More ▼ |
Publication Type
Reports - Evaluative | 40 |
Journal Articles | 34 |
Speeches/Meeting Papers | 7 |
Education Level
Adult Education | 1 |
Audience
Location
Canada | 1 |
North Carolina | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Categorical structural equation modeling (SEM) methods that fit the model to estimated polychoric correlations have become popular in the social sciences. When population thresholds are high in absolute value, contingency tables in small samples are likely to contain zero frequency cells. Such cells make the estimation of the polychoric…
Descriptors: Structural Equation Models, Correlation, Computation, Sample Size
Tong, Xiaoxiao; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Robustness (Statistics), Sample Size
Evermann, Joerg – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…
Descriptors: Structural Equation Models, Computer Software, Sample Size
Fan, Weihua; Hancock, Gregory R. – Journal of Educational and Behavioral Statistics, 2012
This study proposes robust means modeling (RMM) approaches for hypothesis testing of mean differences for between-subjects designs in order to control the biasing effects of nonnormality and variance inequality. Drawing from structural equation modeling (SEM), the RMM approaches make no assumption of variance homogeneity and employ robust…
Descriptors: Robustness (Statistics), Hypothesis Testing, Monte Carlo Methods, Simulation
Yang, Yanyun; Green, Samuel B. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Reliability can be estimated using structural equation modeling (SEM). Two potential problems with this approach are that estimates may be unstable with small sample sizes and biased with misspecified models. A Monte Carlo study was conducted to investigate the quality of SEM estimates of reliability by themselves and relative to coefficient…
Descriptors: Monte Carlo Methods, Structural Equation Models, Reliability, Sample Size
In'nami, Yo; Koizumi, Rie – Language Assessment Quarterly, 2011
Despite the recent increase of structural equation modeling (SEM) in language testing and learning research and Kunnan's (1998) call for the proper use of SEM to produce useful findings, there seem to be no reviews about how SEM is applied in these areas or about the extent to which the current application accords with appropriate practices. To…
Descriptors: Structural Equation Models, Testing, Language Tests, Second Language Learning
Peugh, James L.; Enders, Craig K. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Cluster sampling results in response variable variation both among respondents (i.e., within-cluster or Level 1) and among clusters (i.e., between-cluster or Level 2). Properly modeling within- and between-cluster variation could be of substantive interest in numerous settings, but applied researchers typically test only within-cluster (i.e.,…
Descriptors: Structural Equation Models, Monte Carlo Methods, Multivariate Analysis, Sampling
Chun, So Yeon; Shapiro, Alexander – Multivariate Behavioral Research, 2009
The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equation modeling. Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main…
Descriptors: Statistical Analysis, Structural Equation Models, Validity, Monte Carlo Methods
Hoobler, Jenny M.; Hu, Jia; Wilson, Morgan – Journal of Vocational Behavior, 2010
Based in Conservation of Resources (COR; Hobfoll, 1989) and self-verification (Swann, 1987) theories, we argue that when workers experience conflict between the work and family domains, this should have implications for evaluations of their work performance and ultimately affect more "objective" career outcomes such as salary and hierarchical…
Descriptors: Structural Equation Models, Conflict, Sample Size, Family Work Relationship
Hagemann, Dirk; Meyerhoff, David – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The latent state-trait (LST) theory is an extension of the classical test theory that allows one to decompose a test score into a true trait, a true state residual, and an error component. For practical applications, the variances of these latent variables may be estimated with standard methods of structural equation modeling (SEM). These…
Descriptors: Structural Equation Models, Test Theory, Reliability, Sample Size
Jamshidian, Mortaza; Mata, Matthew – Multivariate Behavioral Research, 2008
Incomplete or missing data is a common problem in almost all areas of empirical research. It is well known that simple and ad hoc methods such as complete case analysis or mean imputation can lead to biased and/or inefficient estimates. The method of maximum likelihood works well; however, when the missing data mechanism is not one of missing…
Descriptors: Structural Equation Models, Simulation, Factor Analysis, Research Methodology
Woods, Carol M. – Multivariate Behavioral Research, 2009
Differential item functioning (DIF) occurs when an item on a test or questionnaire has different measurement properties for 1 group of people versus another, irrespective of mean differences on the construct. This study focuses on the use of multiple-indicator multiple-cause (MIMIC) structural equation models for DIF testing, parameterized as item…
Descriptors: Test Bias, Structural Equation Models, Item Response Theory, Testing
Henson, James M.; Reise, Steven P.; Kim, Kevin H. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…
Descriptors: Statistics, Structural Equation Models, Comparative Analysis, Sample Size
Lee, Sik-Yum; Song, Xin-Yuan; Tang, Nian-Sheng – Structural Equation Modeling: A Multidisciplinary Journal, 2007
The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a…
Descriptors: Interaction, Structural Equation Models, Bayesian Statistics, Computation
Cheung, Mike W. L. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Mediators are variables that explain the association between an independent variable and a dependent variable. Structural equation modeling (SEM) is widely used to test models with mediating effects. This article illustrates how to construct confidence intervals (CIs) of the mediating effects for a variety of models in SEM. Specifically, mediating…
Descriptors: Structural Equation Models, Probability, Intervals, Sample Size