NotesFAQContact Us
Collection
Advanced
Search Tips
Location
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Muhammad Aslam – Measurement: Interdisciplinary Research and Perspectives, 2025
The existing algorithm employing the log-normal distribution lacks applicability in generating imprecise data. This paper addresses this limitation by first introducing the log-normal distribution as a means to handle imprecise data. Subsequently, we leverage the neutrosophic log-normal distribution to devise an algorithm specifically tailored for…
Descriptors: Statistical Distributions, Algorithms, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wendy – American Journal of Evaluation, 2022
Over the past ten years, propensity score methods have made an important contribution to improving generalizations from studies that do not select samples randomly from a population of inference. However, these methods require assumptions and recent work has considered the role of bounding approaches that provide a range of treatment impact…
Descriptors: Probability, Scores, Scoring, Generalization
Peer reviewed Peer reviewed
Direct linkDirect link
Kula, Fulya; Koçer, Rüya Gökhan – Teaching Mathematics and Its Applications, 2020
Difficulties in learning (and thus teaching) statistical inference are well reported in the literature. We argue the problem emanates not only from the way in which statistical inference is taught but also from what exactly is taught as statistical inference. What makes statistical inference difficult to understand is that it contains two logics…
Descriptors: Statistical Inference, Teaching Methods, Difficulty Level, Comprehension
Peer reviewed Peer reviewed
Direct linkDirect link
Lane, David M. – Journal of Statistics Education, 2015
Recently Watkins, Bargagliotti, and Franklin (2014) discovered that simulations of the sampling distribution of the mean can mislead students into concluding that the mean of the sampling distribution of the mean depends on sample size. This potential error arises from the fact that the mean of a simulated sampling distribution will tend to be…
Descriptors: Statistical Distributions, Sampling, Sample Size, Misconceptions
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Osborne, Jason W. – Practical Assessment, Research & Evaluation, 2013
Osborne and Waters (2002) focused on checking some of the assumptions of multiple linear regression. In a critique of that paper, Williams, Grajales, and Kurkiewicz correctly clarify that regression models estimated using ordinary least squares require the assumption of normally distributed errors, but not the assumption of normally distributed…
Descriptors: Multiple Regression Analysis, Least Squares Statistics, Computation, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Tabor, Josh – Journal of Statistics Education, 2010
On the 2009 AP[c] Statistics Exam, students were asked to create a statistic to measure skewness in a distribution. This paper explores several of the most popular student responses and evaluates which statistic performs best when sampling from various skewed populations. (Contains 8 figures, 3 tables, and 4 footnotes.)
Descriptors: Advanced Placement, Statistics, Tests, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Se-Kang – International Journal of Testing, 2010
The aim of the current study is to validate the invariance of major profile patterns derived from multidimensional scaling (MDS) by bootstrapping. Profile Analysis via Multidimensional Scaling (PAMS) was employed to obtain profiles and bootstrapping was used to construct the sampling distributions of the profile coordinates and the empirical…
Descriptors: Intervals, Multidimensional Scaling, Profiles, Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Rodriguez, Michael C.; Maeda, Yukiko – Psychological Methods, 2006
The meta-analysis of coefficient alpha across many studies is becoming more common in psychology by a methodology labeled reliability generalization. Existing reliability generalization studies have not used the sampling distribution of coefficient alpha for precision weighting and other common meta-analytic procedures. A framework is provided for…
Descriptors: Generalization, Sampling, Reliability, Meta Analysis
Delaney, Harold D.; Vargha, Andras – 2000
While violation of the homogeneity of variance assumption has received considerable attention, violation of the assumption of normally distributed data has not received as much attention. As a result, researchers may have the mistaken impression that as long as the assumptions of independence of observations and homogeneity of variance are…
Descriptors: Monte Carlo Methods, Sampling, Statistical Distributions
Peer reviewed Peer reviewed
Baker, Frank B. – Applied Psychological Measurement, 1997
Examined the sampling distributions of equating coefficients produced by the characteristic curve method for tests using graded and nominal response scoring using simulated data. For both models and across all three equating situations, the sampling distributions were generally bell-shaped and peaked, and occasionally had a small degree of…
Descriptors: Equated Scores, Sampling, Simulation, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Ruscio, John; Ruscio, Ayelet Meron; Meron, Mati – Multivariate Behavioral Research, 2007
Meehl's taxometric method was developed to distinguish categorical and continuous constructs. However, taxometric output can be difficult to interpret because expected results for realistic data conditions and differing procedural implementations have not been derived analytically or studied through rigorous simulations. By applying bootstrap…
Descriptors: Sampling, Equated Scores, Data Interpretation, Inferences
Kennedy, Charlotte A. – 2002
The use of and emphasis on statistical significance testing has pervaded educational and behavioral research for many decades in spite of criticism by prominent researchers in this field. Much of the controversy is caused by lack of understanding or misinterpretations. This paper reviews criticisms of statistical significance testing and discusses…
Descriptors: Educational Research, Hypothesis Testing, Research Methodology, Sampling
Arnold, Margery E. – 1996
Sampling error refers to variability that is unique to the sample. If the sample is the entire population, then there is no sampling error. A related point is that sampling error is a function of sample size, as a hypothetical example illustrates. As the sample statistics more and more closely approximate the population parameters, the sampling…
Descriptors: Error of Measurement, Research Methodology, Sample Size, Sampling
Yu, Chong Ho; And Others – 1995
Central limit theorem (CLT) is considered an important topic in statistics, because it serves as the basis for subsequent learning in other crucial concepts such as hypothesis testing and power analysis. There is an increasing popularity in using dynamic computer software for illustrating CLT. Graphical displays do not necessarily clear up…
Descriptors: Computer Simulation, Computer Software, Hypothesis Testing, Identification
Peer reviewed Peer reviewed
Baker, Frank B. – Applied Psychological Measurement, 1996
Using the characteristic curve method for dichotomously scored test items, the sampling distributions of equating coefficients were examined. Simulations indicate that for the equating conditions studied, the sampling distributions of the equating coefficients appear to have acceptable characteristics, suggesting confidence in the values obtained…
Descriptors: Equated Scores, Item Response Theory, Sampling, Statistical Distributions
Previous Page | Next Page »
Pages: 1  |  2