Publication Date
In 2025 | 2 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 22 |
Descriptor
Source
Author
Barchard, Kimberly A. | 2 |
Hakstian, A. Ralph | 2 |
Abu Bakar, Abu Yazid | 1 |
Adrian Quintero | 1 |
Bakker, Arthur | 1 |
Baram, Tallie Z. | 1 |
Bauer, Karen W. | 1 |
Beath, Ken J. | 1 |
Ben-Zvi, Dani | 1 |
Blankmeyer, Eric | 1 |
Breunig, Nancy A. | 1 |
More ▼ |
Publication Type
Reports - Evaluative | 33 |
Journal Articles | 25 |
Speeches/Meeting Papers | 5 |
Information Analyses | 1 |
Numerical/Quantitative Data | 1 |
Opinion Papers | 1 |
Education Level
Secondary Education | 4 |
Higher Education | 3 |
Postsecondary Education | 2 |
High Schools | 1 |
Audience
Researchers | 1 |
Location
Canada | 1 |
Illinois | 1 |
New Zealand | 1 |
United Kingdom (Wales) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Cognitive Abilities Test | 1 |
National Assessment of… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Juan F. Muñoz; Pablo J. Moya-Fernández; Encarnación Álvarez-Verdejo – Sociological Methods & Research, 2025
The Gini index is probably the most commonly used indicator to measure inequality. For continuous distributions, the Gini index can be computed using several equivalent formulations. However, this is not the case with discrete distributions, where controversy remains regarding the expression to be used to estimate the Gini index. We attempt to…
Descriptors: Bias, Educational Indicators, Equal Education, Monte Carlo Methods
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Leslie Rutkowski; David Rutkowski – Journal of Creative Behavior, 2025
The Programme for International Student Assessment (PISA) introduced creative thinking as an innovative domain in 2022. This paper examines the unique methodological issues in international assessments and the implications of measuring creative thinking within PISA's framework, including stratified sampling, rotated form designs, and a distinct…
Descriptors: Creativity, Creative Thinking, Measurement, Sampling
Kula, Fulya; Koçer, Rüya Gökhan – Teaching Mathematics and Its Applications, 2020
Difficulties in learning (and thus teaching) statistical inference are well reported in the literature. We argue the problem emanates not only from the way in which statistical inference is taught but also from what exactly is taught as statistical inference. What makes statistical inference difficult to understand is that it contains two logics…
Descriptors: Statistical Inference, Teaching Methods, Difficulty Level, Comprehension
Hayden, Robert W. – Journal of Statistics Education, 2019
Recent years have seen increasing interest in incorporating resampling methods into introductory statistics courses and the high school mathematics curriculum. While the use of permutation tests for data from experiments is a step forward, the use of simple bootstrap methods for sampling situations is more problematical. This article demonstrates…
Descriptors: Sampling, Statistical Inference, Introductory Courses, College Mathematics
Shi, Yongren; Cameron, Christopher J.; Heckathorn, Douglas D. – Sociological Methods & Research, 2019
Respondent-driven sampling (RDS), a link-tracing sampling and inference method for studying hard-to-reach populations, has been shown to produce asymptotically unbiased population estimates when its assumptions are satisfied. However, some of the assumptions are prohibitively difficult to reach in the field, and the violation of a crucial…
Descriptors: Statistical Inference, Bias, Recruitment, Sampling
Vegetabile, Brian G.; Stout-Oswald, Stephanie A.; Davis, Elysia Poggi; Baram, Tallie Z.; Stern, Hal S. – Journal of Educational and Behavioral Statistics, 2019
Predictability of behavior is an important characteristic in many fields including biology, medicine, marketing, and education. When a sequence of actions performed by an individual can be modeled as a stationary time-homogeneous Markov chain the predictability of the individual's behavior can be quantified by the entropy rate of the process. This…
Descriptors: Markov Processes, Prediction, Behavior, Computation
Cappaert, Kevin J.; Wen, Yao; Chang, Yu-Feng – Measurement: Interdisciplinary Research and Perspectives, 2018
Events such as curriculum changes or practice effects can lead to item parameter drift (IPD) in computer adaptive testing (CAT). The current investigation introduced a point- and weight-adjusted D[superscript 2] method for IPD detection for use in a CAT environment when items are suspected of drifting across test administrations. Type I error and…
Descriptors: Adaptive Testing, Computer Assisted Testing, Test Items, Identification
Walters, Glenn D. – International Journal of Social Research Methodology, 2019
Identifying mediators in variable chains as part of a causal mediation analysis can shed light on issues of causation, assessment, and intervention. However, coefficients and effect sizes in a causal mediation analysis are nearly always small. This can lead those less familiar with the approach to reject the results of causal mediation analysis.…
Descriptors: Effect Size, Statistical Analysis, Sampling, Statistical Inference
Ben-Zvi, Dani; Bakker, Arthur; Makar, Katie – Educational Studies in Mathematics, 2015
The goal of this article is to introduce the topic of "learning to reason from samples," which is the focus of this special issue of "Educational Studies in Mathematics" on "statistical reasoning." Samples are data sets, taken from some wider universe (e.g., a population or a process) using a particular procedure…
Descriptors: Mathematics Instruction, Statistical Analysis, Mathematical Logic, Statistical Inference
Neale, Dave – Oxford Review of Education, 2015
Recently, Stephen Gorard has outlined strong objections to the use of significance testing in social research. He has argued, first, that as the samples used in social research are almost always non-random it is not possible to use inferential statistical techniques and, second, that even if a truly random sample were achieved, the logic behind…
Descriptors: Statistical Significance, Statistical Analysis, Sampling, Probability
Gongjun Xu; Tony Sit; Lan Wang; Chiung-Yu Huang – Grantee Submission, 2017
Biased sampling occurs frequently in economics, epidemiology, and medical studies either by design or due to data collecting mechanism. Failing to take into account the sampling bias usually leads to incorrect inference. We propose a unified estimation procedure and a computationally fast resampling method to make statistical inference for…
Descriptors: Sampling, Statistical Inference, Computation, Generalization
Gu, Fei; Preacher, Kristopher J.; Ferrer, Emilio – Journal of Educational and Behavioral Statistics, 2014
Mediation is a causal process that evolves over time. Thus, a study of mediation requires data collected throughout the process. However, most applications of mediation analysis use cross-sectional rather than longitudinal data. Another implicit assumption commonly made in longitudinal designs for mediation analysis is that the same mediation…
Descriptors: Statistical Analysis, Models, Research Design, Case Studies
Beath, Ken J. – Research Synthesis Methods, 2014
When performing a meta-analysis unexplained variation above that predicted by within study variation is usually modeled by a random effect. However, in some cases, this is not sufficient to explain all the variation because of outlier or unusual studies. A previously described method is to define an outlier as a study requiring a higher random…
Descriptors: Mixed Methods Research, Robustness (Statistics), Meta Analysis, Prediction
Ishak, Noriah Mohd; Abu Bakar, Abu Yazid – World Journal of Education, 2014
Due to statistical analysis, the issue of random sampling is pertinent to any quantitative study. Unlike quantitative study, the elimination of inferential statistical analysis, allows qualitative researchers to be more creative in dealing with sampling issue. Since results from qualitative study cannot be generalized to the bigger population,…
Descriptors: Case Studies, Statistical Analysis, Sampling, Qualitative Research