Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 22 |
Since 2016 (last 10 years) | 68 |
Since 2006 (last 20 years) | 310 |
Descriptor
Source
Author
Publication Type
Education Level
Higher Education | 66 |
Postsecondary Education | 34 |
Elementary Education | 25 |
Elementary Secondary Education | 15 |
High Schools | 14 |
Secondary Education | 14 |
Middle Schools | 11 |
Grade 8 | 8 |
Grade 3 | 6 |
Grade 4 | 6 |
Grade 1 | 4 |
More ▼ |
Location
Australia | 11 |
California | 7 |
North Carolina | 7 |
Netherlands | 6 |
United States | 5 |
Canada | 4 |
Florida | 4 |
Kentucky | 4 |
New York | 4 |
Texas | 4 |
Louisiana | 3 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Daniel B. Wright – Open Education Studies, 2024
Pearson's correlation is widely used to test for an association between two variables and also forms the basis of several multivariate statistical procedures including many latent variable models. Spearman's [rho] is a popular alternative. These procedures are compared with ranking the data and then applying the inverse normal transformation, or…
Descriptors: Models, Simulation, Statistical Analysis, Correlation
Lihan Chen; Milica Miocevic; Carl F. Falk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data pooling is a powerful strategy in empirical research. However, combining multiple datasets often results in a large amount of missing data, as variables that are not present in some datasets effectively contain missing values for all participants in those datasets. Furthermore, data pooling typically leads to a mix of continuous and…
Descriptors: Simulation, Factor Analysis, Models, Statistical Analysis
Xu Qin – Asia Pacific Education Review, 2024
Causal mediation analysis has gained increasing attention in recent years. This article guides empirical researchers through the concepts and challenges of causal mediation analysis. I first clarify the difference between traditional and causal mediation analysis and highlight the importance of adjusting for the treatment-by-mediator interaction…
Descriptors: Causal Models, Mediation Theory, Statistical Analysis, Computer Software
Pósch, Krisztián – Sociological Methods & Research, 2021
Complex social scientific theories are conventionally tested using linear structural equation modeling (SEM). However, the underlying assumptions of linear SEM often prove unrealistic, making the decomposition of direct and indirect effects problematic. Recent advancements in causal mediation analysis can help to address these shortcomings,…
Descriptors: Social Theories, Causal Models, Structural Equation Models, Statistical Analysis
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Schamberger, Tamara; Schuberth, Florian; Henseler, Jörg – International Journal of Behavioral Development, 2023
Research in human development often relies on composites, that is, composed variables such as indices. Their composite nature renders these variables inaccessible to conventional factor-centric psychometric validation techniques such as confirmatory factor analysis (CFA). In the context of human development research, there is currently no…
Descriptors: Individual Development, Factor Analysis, Statistical Analysis, Structural Equation Models
Raykov, Tenko; Bluemke, Matthias – Educational and Psychological Measurement, 2021
A widely applicable procedure of examining proximity to unidimensionality for multicomponent measuring instruments with multidimensional structure is discussed. The method is developed within the framework of latent variable modeling and allows one to point and interval estimate an explained variance proportion-based index that may be considered a…
Descriptors: Proximity, Measures (Individuals), Models, Statistical Analysis
Peter Schochet – Society for Research on Educational Effectiveness, 2024
Random encouragement designs are randomized controlled trials (RCTs) that test interventions aimed at increasing participation in a program or activity whose take up is not universal. In these RCTs, instead of randomizing individuals or clusters directly into treatment and control groups to participate in a program or activity, the randomization…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Angrist, Joshua – National Bureau of Economic Research, 2022
The view that empirical strategies in economics should be transparent and credible now goes almost without saying. The local average treatment effects (LATE) framework for causal inference helped make this so. The LATE theorem tells us for whom particular instrumental variables (IV) and regression discontinuity estimates are valid. This lecture…
Descriptors: Economics, Statistical Analysis, Causal Models, Regression (Statistics)
Jinyong Hahn; John D. Singleton; Nese Yildiz – Annenberg Institute for School Reform at Brown University, 2023
Panel or grouped data are often used to allow for unobserved individual heterogeneity in econometric models via fixed effects. In this paper, we discuss identification of a panel data model in which the unobserved heterogeneity both enters additively and interacts with treatment variables. We present identification and estimation methods for…
Descriptors: Teacher Effectiveness, Models, Computation, Statistical Analysis
Daza, Sebastian; Kreuger, L. Kurt – Sociological Methods & Research, 2021
Although agent-based models (ABMs) have been increasingly accepted in social sciences as a valid tool to formalize theory, propose mechanisms able to recreate regularities, and guide empirical research, we are not aware of any research using ABMs to assess the robustness of our statistical methods. We argue that ABMs can be extremely helpful to…
Descriptors: Statistical Analysis, Models, Selection, Social Influences
Curran, Patrick J.; Hancock, Gregory R. – Child Development Perspectives, 2021
One of the most vexing challenges facing developmental researchers today is the statistical modeling of two or more behaviors as they unfold jointly over time. Although quantitative methodologists have studied these issues for more than half a century, no widely agreed-upon principled strategy exists to empirically analyze codevelopmental…
Descriptors: Research, Statistical Analysis, Developmental Psychology, Mathematical Models
Maksimovic, Jelena; Evtimov, Jelena – Research in Pedagogy, 2023
The paradigm on which a methodological approach is developed determines the situations in which its application will be most appropriate. The quantitative approach implies a positivist paradigm, the basis of which is cause-and-effect relationships, as well as the questioning and verifying of existing theories. Positivism aims to prove that…
Descriptors: Statistical Analysis, Research Methodology, Educational Research, Models
Braun, Henry – International Journal of Educational Methodology, 2021
This article introduces the concept of the carrying capacity of data (CCD), defined as an integrated, evaluative judgment of the credibility of specific data-based inferences, informed by quantitative and qualitative analyses, leavened by experience. The sequential process of evaluating the CCD is represented schematically by a framework that can…
Descriptors: Data Use, Social Sciences, Data Analysis, Data Interpretation
Bloome, Deirdre; Schrage, Daniel – Sociological Methods & Research, 2021
Causal analyses typically focus on average treatment effects. Yet for substantive research on topics like inequality, interest extends to treatments' distributional consequences. When individuals differ in their responses to treatment, three types of inequality may result. Treatment may shape inequalities between subgroups defined by pretreatment…
Descriptors: Regression (Statistics), Outcomes of Treatment, Statistical Analysis, Correlation