NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Evaluative18
Journal Articles12
Speeches/Meeting Papers3
Education Level
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Julian Schuessler; Peter Selb – Sociological Methods & Research, 2025
Directed acyclic graphs (DAGs) are now a popular tool to inform causal inferences. We discuss how DAGs can also be used to encode theoretical assumptions about nonprobability samples and survey nonresponse and to determine whether population quantities including conditional distributions and regressions can be identified. We describe sources of…
Descriptors: Data Collection, Graphs, Error of Measurement, Statistical Bias
Eli Ben-Michael; Avi Feller; Erin Hartman – Grantee Submission, 2023
In the November 2016 U.S. presidential election, many state level public opinion polls, particularly in the Upper Midwest, incorrectly predicted the winning candidate. One leading explanation for this polling miss is that the precipitous decline in traditional polling response rates led to greater reliance on statistical methods to adjust for the…
Descriptors: Public Opinion, National Surveys, Elections, Political Campaigns
Peer reviewed Peer reviewed
Direct linkDirect link
Lai, Mark H. C. – Journal of Educational and Behavioral Statistics, 2019
Previous studies have detailed the consequence of ignoring a level of clustering in multilevel models with straightly hierarchical structures and have proposed methods to adjust for the fixed effect standard errors (SEs). However, in behavioral and social science research, there are usually two or more crossed clustering levels, such as when…
Descriptors: Error of Measurement, Hierarchical Linear Modeling, Least Squares Statistics, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Vegetabile, Brian G.; Stout-Oswald, Stephanie A.; Davis, Elysia Poggi; Baram, Tallie Z.; Stern, Hal S. – Journal of Educational and Behavioral Statistics, 2019
Predictability of behavior is an important characteristic in many fields including biology, medicine, marketing, and education. When a sequence of actions performed by an individual can be modeled as a stationary time-homogeneous Markov chain the predictability of the individual's behavior can be quantified by the entropy rate of the process. This…
Descriptors: Markov Processes, Prediction, Behavior, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Rollins, Derrick, Sr. – Chemical Engineering Education, 2017
Statistical inference simply means to draw a conclusion based on information that comes from data. Error bars are the most commonly used tool for data analysis and inference in chemical engineering data studies. This work demonstrates, using common types of data collection studies, the importance of specifying the statistical model for sound…
Descriptors: Data Analysis, Statistical Inference, Chemical Engineering, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Walters, Glenn D. – International Journal of Social Research Methodology, 2019
Identifying mediators in variable chains as part of a causal mediation analysis can shed light on issues of causation, assessment, and intervention. However, coefficients and effect sizes in a causal mediation analysis are nearly always small. This can lead those less familiar with the approach to reject the results of causal mediation analysis.…
Descriptors: Effect Size, Statistical Analysis, Sampling, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pek, Jolynn; Wong, Octavia; Wong, C. M. – Practical Assessment, Research & Evaluation, 2017
Data transformations have been promoted as a popular and easy-to-implement remedy to address the assumption of normally distributed errors (in the population) in linear regression. However, the application of data transformations introduces non-ignorable complexities which should be fully appreciated before their implementation. This paper adds to…
Descriptors: Data Analysis, Regression (Statistics), Statistical Inference, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
VanHoudnos, Nathan M.; Greenhouse, Joel B. – Journal of Educational and Behavioral Statistics, 2016
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Error of Measurement, Scaling
Gelman, Andrew; Imbens, Guido – National Bureau of Economic Research, 2014
It is common in regression discontinuity analysis to control for high order (third, fourth, or higher) polynomials of the forcing variable. We argue that estimators for causal effects based on such methods can be misleading, and we recommend researchers do not use them, and instead use estimators based on local linear or quadratic polynomials or…
Descriptors: Regression (Statistics), Mathematical Models, Causal Models, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Vanhove, Jan – Studies in Second Language Learning and Teaching, 2015
I discuss three common practices that obfuscate or invalidate the statistical analysis of randomized controlled interventions in applied linguistics. These are (a) checking whether randomization produced groups that are balanced on a number of possibly relevant covariates, (b) using repeated measures ANOVA to analyze pretest-posttest designs, and…
Descriptors: Randomized Controlled Trials, Intervention, Applied Linguistics, Statistical Analysis
Spinella, Sarah – Online Submission, 2011
As result replicability is essential to science and difficult to achieve through external replicability, the present paper notes the insufficiency of null hypothesis statistical significance testing (NHSST) and explains the bootstrap as a plausible alternative, with a heuristic example to illustrate the bootstrap method. The bootstrap relies on…
Descriptors: Sampling, Statistical Inference, Statistical Significance, Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Williams, Matt N.; Gomez Grajales, Carlos Alberto; Kurkiewicz, Dason – Practical Assessment, Research & Evaluation, 2013
In 2002, an article entitled "Four assumptions of multiple regression that researchers should always test" by Osborne and Waters was published in "PARE." This article has gone on to be viewed more than 275,000 times (as of August 2013), and it is one of the first results displayed in a Google search for "regression…
Descriptors: Multiple Regression Analysis, Misconceptions, Reader Response, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Se-Kang – International Journal of Testing, 2010
The aim of the current study is to validate the invariance of major profile patterns derived from multidimensional scaling (MDS) by bootstrapping. Profile Analysis via Multidimensional Scaling (PAMS) was employed to obtain profiles and bootstrapping was used to construct the sampling distributions of the profile coordinates and the empirical…
Descriptors: Intervals, Multidimensional Scaling, Profiles, Evaluation
Peer reviewed Peer reviewed
Bedeian, Arthur G.; Day, David V.; Kelloway, E. Kevin – Educational and Psychological Measurement, 1997
Methods by which structural models correct for the effects of attenuation due to measurement error are reviewed, and implications of such disattenuation for interpreting the results of structural equation models are considered. Recommendations are made for improving the practice of disattenuation, and caution is urged in drawing inferences based…
Descriptors: Error of Measurement, Estimation (Mathematics), Mathematical Models, Statistical Inference
Kish, Leslie – 1989
A brief, practical overview of "design effects" (DEFFs) is presented for users of the results of sample surveys. The overview is intended to help such users to determine how and when to use DEFFs and to compute them correctly. DEFFs are needed only for inferential statistics, not for descriptive statistics. When the selections for…
Descriptors: Computer Software, Error of Measurement, Mathematical Models, Research Design
Previous Page | Next Page ยป
Pages: 1  |  2