NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Aid to Families with…1
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jeroen D. Mulder; Kim Luijken; Bas B. L. Penning de Vries; Ellen L. Hamaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The use of structural equation models for causal inference from panel data is critiqued in the causal inference literature for unnecessarily relying on a large number of parametric assumptions, and alternative methods originating from the potential outcomes framework have been recommended, such as inverse probability weighting (IPW) estimation of…
Descriptors: Structural Equation Models, Time on Task, Time Management, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua Weidlich; Ben Hicks; Hendrik Drachsler – Educational Technology Research and Development, 2024
Researchers tasked with understanding the effects of educational technology innovations face the challenge of providing evidence of causality. Given the complexities of studying learning in authentic contexts interwoven with technological affordances, conducting tightly-controlled randomized experiments is not always feasible nor desirable. Today,…
Descriptors: Educational Research, Educational Technology, Research Design, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Pósch, Krisztián – Sociological Methods & Research, 2021
Complex social scientific theories are conventionally tested using linear structural equation modeling (SEM). However, the underlying assumptions of linear SEM often prove unrealistic, making the decomposition of direct and indirect effects problematic. Recent advancements in causal mediation analysis can help to address these shortcomings,…
Descriptors: Social Theories, Causal Models, Structural Equation Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hilley, Chanler D.; O'Rourke, Holly P. – International Journal of Behavioral Development, 2022
Researchers in behavioral sciences are often interested in longitudinal behavior change outcomes and the mechanisms that influence changes in these outcomes over time. The statistical models that are typically implemented to address these research questions do not allow for investigation of mechanisms of dynamic change over time. However, latent…
Descriptors: Behavioral Science Research, Research Methodology, Longitudinal Studies, Behavior Change
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Nick; Chamberlain, Laura – Measurement: Interdisciplinary Research and Perspectives, 2016
Aguirre-Urreta, Rönkkö, and Marakas' (2016) paper in "Measurement: Interdisciplinary Research and Perspectives" (hereafter referred to as ARM2016) is an important and timely piece of scholarship, in that it provides strong analytic support to the growing theoretical literature that questions the underlying ideas behind causal and…
Descriptors: Measurement, Causal Models, Formative Evaluation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Jue; Engelhard, George, Jr. – Measurement: Interdisciplinary Research and Perspectives, 2016
The authors of the focus article describe an important issue related to the use and interpretation of causal indicators within the context of structural equation modeling (SEM). In the focus article, the authors illustrate with simulated data the effects of omitting a causal indicator. Since SEMs are used extensively in the social and behavioral…
Descriptors: Structural Equation Models, Measurement, Causal Models, Construct Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Markus, Keith A. – Measurement: Interdisciplinary Research and Perspectives, 2014
In a series of articles and comments, Kenneth Bollen and his collaborators have incrementally refined an account of structural equation models that (a) model a latent variable as the effect of several observed variables and (b) carry an interpretation of the observed variables as, in some sense, measures of the latent variable that they cause.…
Descriptors: Measurement, Structural Equation Models, Statistical Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2015
This article is a commentary on the Focus Article, "Interpretational Confounding or Confounded Interpretations of Causal Indicators?" and a commentary that was published in issue 12(4) 2014 of "Measurement: Interdisciplinary Research & Perspectives". The authors challenge two claims: (a) Bainter and Bollen argue that the…
Descriptors: Causal Models, Measurement, Data Interpretation, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2016
In this article, the authors extend the results of Aguirre-Urreta, Rönkkö, and Marakas (2016) concerning the omission of a relevant causal indicator by testing the validity of the assumption that causal indicators are entirely superfluous to the measurement model and discuss the implications for measurement theory. Contrary to common wisdom…
Descriptors: Causal Models, Structural Equation Models, Formative Evaluation, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Jue; Engelhard, George, Jr.; Lu, Zhenqiu – Measurement: Interdisciplinary Research and Perspectives, 2014
The authors of the focus article in this issue have emphasized the continuing confusion among some researchers regarding various indicators used in structural equation models (SEMs). Their major claim is that causal indicators are not inherently unstable, and even if they are unstable they are at least not more unstable than other types of…
Descriptors: Structural Equation Models, Measurement, Statistical Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Widaman, Keith F. – Measurement: Interdisciplinary Research and Perspectives, 2014
Latent variable structural equation modeling has become the analytic method of choice in many domains of research in psychology and allied social sciences. One important aspect of a latent variable model concerns the relations hypothesized to hold between latent variables and their indicators. The most common specification of structural equation…
Descriptors: Structural Equation Models, Predictor Variables, Educational Research, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Martin, Andrew J. – Educational Psychology Review, 2011
Longitudinal structural equation modeling (SEM) can be a basis for making prescriptive statements on educational practice and offers yields over "traditional" statistical techniques under the general linear model. The extent to which prescriptive statements can be made will rely on the appropriate accommodation of key elements of research design,…
Descriptors: Research Design, Structural Equation Models, Educational Practices, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Landsheer, J. A. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Tetrad IV is a program designed for the specification of causal models. It is specifically designed to search for causal relations, but also offers the possibility to estimate the parameters of a structural equation model. It offers a remarkable graphical user interface, which facilitates building, evaluating, and searching for causal models. The…
Descriptors: Structural Equation Models, Causal Models, Evaluation, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Sobel, Michael E. – Journal of Educational and Behavioral Statistics, 2008
Treatments in randomized studies are often targeted to key mediating variables. Researchers want to know if the treatment is effective and how the mediators affect the outcome. The data are often analyzed using structural equation models (SEMs), and model coefficients are interpreted as effects. However, only assignment to treatment groups is…
Descriptors: Structural Equation Models, Causal Models, Identification
Previous Page | Next Page »
Pages: 1  |  2