NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 35 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Po-Chun Huang; Ying-Hong Chan; Ching-Yu Yang; Hung-Yuan Chen; Yao-Chung Fan – IEEE Transactions on Learning Technologies, 2024
Question generation (QG) task plays a crucial role in adaptive learning. While significant QG performance advancements are reported, the existing QG studies are still far from practical usage. One point that needs strengthening is to consider the generation of question group, which remains untouched. For forming a question group, intrafactors…
Descriptors: Automation, Test Items, Computer Assisted Testing, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Zhu, Xinhua; Wu, Han; Zhang, Lanfang – IEEE Transactions on Learning Technologies, 2022
Automatic short-answer grading (ASAG) is a key component of intelligent tutoring systems. Deep learning is an advanced method to deal with recognizing textual entailment tasks in an end-to-end manner. However, deep learning methods for ASAG still remain challenging mainly because of the following two major reasons: (1) high-precision scoring…
Descriptors: Intelligent Tutoring Systems, Grading, Automation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Feng Hsu Wang – IEEE Transactions on Learning Technologies, 2024
Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in…
Descriptors: Learning Processes, Models, Man Machine Systems, Cooperative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Abbas, Mohsin; van Rosmalen, Peter; Kalz, Marco – IEEE Transactions on Learning Technologies, 2023
For predicting and improving the quality of essays, text analytic metrics (surface, syntactic, morphological, and semantic features) can be used to provide formative feedback to the students in higher education. In this study, the goal was to identify a sufficient number of features that exhibit a fair proxy of the scores given by the human raters…
Descriptors: Feedback (Response), Automation, Essays, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Alejandra J. Magana; Syed Tanzim Mubarrat; Dominic Kao; Bedrich Benes – IEEE Transactions on Learning Technologies, 2024
Fostering productive engagement within teams has been found to improve student learning outcomes. Consequently, characterizing productive and unproductive time during teamwork sessions is a critical preliminary step to increase engagement in teamwork meetings. However, research from the cognitive sciences has mainly focused on characterizing…
Descriptors: Artificial Intelligence, Technology Uses in Education, Teamwork, Learner Engagement
Peer reviewed Peer reviewed
Direct linkDirect link
Rodrigues, Luiz; Toda, Armando M.; Oliveira, Wilk; Palomino, Paula Toledo; Vassileva, Julita; Isotani, Seiji – IEEE Transactions on Learning Technologies, 2022
Personalized gamification explores user models to tailor gamification designs to mitigate cases wherein the one-size-fits-all approach ineffectively improves learning outcomes. The tailoring process should simultaneously consider user and contextual characteristics (e.g., activity to be done and geographic location), which leads to several…
Descriptors: Automation, Game Based Learning, Individualized Instruction, Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Lemantara, Julianto; Hariadi, Bambang; Sunarto, M. J. Dewiyani; Amelia, Tan; Sagirani, Tri – IEEE Transactions on Learning Technologies, 2023
A quick and effective learning assessment is needed to evaluate the learning process. Many tools currently offer automatic assessment for subjective and objective questions; however, there is no such free tool that provides plagiarism detection among students for subjective questions in a learning management system (LMS). This article aims to…
Descriptors: Students, Cheating, Prediction, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Okubo, Fumiya; Shiino, Tetsuya; Minematsu, Tsubasa; Taniguchi, Yuta; Shimada, Atsushi – IEEE Transactions on Learning Technologies, 2023
In this study, we propose an integrated system to support learners' reviews. In the proposed system, the review dashboard is used to recommend review contents that are adaptive to the individual learner's level of understanding and to present other information that is useful for review. The pages of the digital learning materials that are…
Descriptors: Learning Management Systems, Student Evaluation, Automation, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Uto, Masaki; Aomi, Itsuki; Tsutsumi, Emiko; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2023
In automated essay scoring (AES), essays are automatically graded without human raters. Many AES models based on various manually designed features or various architectures of deep neural networks (DNNs) have been proposed over the past few decades. Each AES model has unique advantages and characteristics. Therefore, rather than using a single-AES…
Descriptors: Prediction, Scores, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Qi; Rose, Carolyn P.; Ma, Ning; Jiang, Shiyan; Bao, Haogang; Li, Yanyan – IEEE Transactions on Learning Technologies, 2022
Forums are essential components facilitating interactions in online courses. However, in large-scale courses, many posts generated, which results in learners' difficulties. First, the posts are poorly organized and some deviate from the topic, making it difficult for learners' knowledge acquisition. Second, learners cannot receive timely feedback…
Descriptors: Design, Automation, Feedback (Response), Scaffolding (Teaching Technique)
Peer reviewed Peer reviewed
Direct linkDirect link
Sha, Lele; Rakovic, Mladen; Lin, Jionghao; Guan, Quanlong; Whitelock-Wainwright, Alexander; Gasevic, Dragan; Chen, Guanliang – IEEE Transactions on Learning Technologies, 2023
In online courses, discussion forums play a key role in enhancing student interaction with peers and instructors. Due to large enrolment sizes, instructors often struggle to respond to students in a timely manner. To address this problem, both traditional machine learning (ML) (e.g., Random Forest) and deep learning (DL) approaches have been…
Descriptors: Computer Mediated Communication, Discussion Groups, Artificial Intelligence, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas, Chinchu; Jayagopi, Dinesh Babu – IEEE Transactions on Learning Technologies, 2022
Effective presentation skills are an important ability for students and professionals to possess. Automatic analysis of presentation skills can help provide feedback to a speaker, and a complete analysis is possible only with both speaker and audience measurement. In this article, we propose a methodology to predict presentation skills on a small…
Descriptors: Public Speaking, Prediction, Automation, Video Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Chen; Di Wu – IEEE Transactions on Learning Technologies, 2024
Generative artificial intelligence (AI) is widely recognized as one of the most influential technologies for the future, having sparked a paradigm shift in scientific research. The field of education has also been greatly impacted by this transformative technology, with researchers exploring the applications of generative AI, particularly ChatGPT,…
Descriptors: Automation, Multimedia Materials, Instructional Materials, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Motz, Benjamin A.; Mallon, Matthew G.; Quick, Joshua D. – IEEE Transactions on Learning Technologies, 2021
As institutions of higher education increasingly utilize online learning management systems, college students are asked to submit more assignments online. Under this regime, when most assignments are posted and submitted online, it is possible to know if a student is missing a submission for an imminent deadline, and to intervene proactively to…
Descriptors: Automation, Assignments, Cues, Time Management
Peer reviewed Peer reviewed
Direct linkDirect link
Bei Cai; Ziyu He; Hong Fu; Yang Zheng; Yanjie Song – IEEE Transactions on Learning Technologies, 2025
Much research has applied automated writing evaluation (AWE) systems to English writing instruction; however, understanding how students internalize and apply this feedback to reduce writing errors is difficult, largely due to the personal and private nature of this process. Therefore, this research utilized eye-tracking technology to explore the…
Descriptors: Undergraduate Students, Majors (Students), Writing (Composition), Writing Evaluation
Previous Page | Next Page ยป
Pages: 1  |  2  |  3