NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 51 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mehmet Arif Demirta¸; Max Fowler; Kathryn Cunningham – International Educational Data Mining Society, 2024
Analyzing which skills students develop in introductory programming education is an important question for the computer science education community. These key skills and concepts have been formalized as knowledge components, which are units of knowledge that can be measured by performance on a set of tasks. While knowledge components in other…
Descriptors: Programming, Computer Science Education, Skill Development, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fein, Benedikt; Graßl, Isabella; Beck, Florian; Fraser, Gordon – International Educational Data Mining Society, 2022
The recent trend of embedding source code for machine learning applications also enables new opportunities in learning analytics in programming education, but which code embedding approach is most suitable for learning analytics remains an open question. A common approach to embedding source code lies in extracting syntactic information from a…
Descriptors: Artificial Intelligence, Learning Analytics, Programming, Programming Languages
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Muntasir Hoq; Ananya Rao; Reisha Jaishankar; Krish Piryani; Nithya Janapati; Jessica Vandenberg; Bradford Mott; Narges Norouzi; James Lester; Bita Akram – International Educational Data Mining Society, 2025
In Computer Science (CS) education, understanding factors contributing to students' programming difficulties is crucial for effective learning support. By identifying specific issues students face, educators can provide targeted assistance to help them overcome obstacles and improve learning outcomes. While identifying sources of struggle, such as…
Descriptors: Computer Science Education, Programming, Misconceptions, Error Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jesper Dannath; Alina Deriyeva; Benjamin Paaßen – International Educational Data Mining Society, 2025
Research on the effectiveness of Intelligent Tutoring Systems (ITSs) suggests that automatic hint generation has the best effect on learning outcomes when hints are provided on the level of intermediate steps. However, ITSs for programming tasks face the challenge to decide on the granularity of steps for feedback, since it is not a priori clear…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang Shi; Tiffany Barnes; Min Chi; Thomas Price – International Educational Data Mining Society, 2024
Knowledge tracing (KT) models have been a commonly used tool for tracking students' knowledge status. Recent advances in deep knowledge tracing (DKT) have demonstrated increased performance for knowledge tracing tasks in many datasets. However, interpreting students' states on single knowledge components (KCs) from DKT models could be challenging…
Descriptors: Algorithms, Artificial Intelligence, Models, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Muhammad Fawad Akbar Khan; Max Ramsdell; Erik Falor; Hamid Karimi – International Educational Data Mining Society, 2024
This paper undertakes a thorough evaluation of ChatGPT's code generation capabilities, contrasting them with those of human programmers from both educational and software engineering standpoints. The emphasis is placed on elucidating its importance in these intertwined domains. To facilitate a robust analysis, we curated a novel dataset comprising…
Descriptors: Artificial Intelligence, Automation, Computer Science Education, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Höppner, Frank – International Educational Data Mining Society, 2021
Various similarity measures for source code have been proposed, many rely on edit- or tree-distance. To support a lecturer in quickly assessing live or online exercises with respect to "approaches taken by the students," we compare source code on a more abstract, semantic level. Even if novice student's solutions follow the same idea,…
Descriptors: Coding, Classification, Programming, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Idir Saïdi; Nicolas Durand; Frédéric Flouvat – International Educational Data Mining Society, 2025
The aim of this paper is to provide tools to teachers for monitoring student work and understanding practices in order to help student and possibly adapt exercises in the future. In the context of an online programming learning platform, we propose to study the attempts (i.e., submitted programs) of the students for each exercise by using…
Descriptors: Programming, Online Courses, Visual Aids, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yunsung Kim; Jadon Geathers; Chris Piech – International Educational Data Mining Society, 2024
"Stochastic programs," which are programs that produce probabilistic output, are a pivotal paradigm in various areas of CS education from introductory programming to machine learning and data science. Despite their importance, the problem of automatically grading such programs remains surprisingly unexplored. In this paper, we formalize…
Descriptors: Grading, Automation, Accuracy, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hoq, Muntasir; Brusilovsky, Peter; Akram, Bita – International Educational Data Mining Society, 2023
Prediction of student performance in introductory programming courses can assist struggling students and improve their persistence. On the other hand, it is important for the prediction to be transparent for the instructor and students to effectively utilize the results of this prediction. Explainable Machine Learning models can effectively help…
Descriptors: Academic Achievement, Prediction, Models, Introductory Courses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2022
In computer science education timely help seeking during large programming projects is essential for student success. Help-seeking in typical courses happens in office hours and through online forums. In this research, we analyze students coding activities and help requests to understand the interaction between these activities. We collected…
Descriptors: Computer Science Education, College Students, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kaden Hart; Christopher M. Warren; Seth Poulsen; John Edwards – International Educational Data Mining Society, 2024
We report on a study in which we examined the work habits of six students who agreed to use do not disturb on their phone while working on programming assignments. Two students tried do not disturb, and quickly quit using it. Three out of four remaining student participants were more productive while using do not disturb when working on their…
Descriptors: Telecommunications, Handheld Devices, Computer Use, Student Behavior
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4