NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Journal of Educational Data…20
Publication Type
Journal Articles20
Reports - Research20
Information Analyses1
Audience
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment1
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Frank Stinar; Zihan Xiong; Nigel Bosch – Journal of Educational Data Mining, 2024
Educational data mining has allowed for large improvements in educational outcomes and understanding of educational processes. However, there remains a constant tension between educational data mining advances and protecting student privacy while using educational datasets. Publicly available datasets have facilitated numerous research projects…
Descriptors: Foreign Countries, College Students, Secondary School Students, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang Shi; Robin Schmucker; Keith Tran; John Bacher; Kenneth Koedinger; Thomas Price; Min Chi; Tiffany Barnes – Journal of Educational Data Mining, 2024
Understanding students' learning of knowledge components (KCs) is an important educational data mining task and enables many educational applications. However, in the domain of computing education, where program exercises require students to practice many KCs simultaneously, it is a challenge to attribute their errors to specific KCs and,…
Descriptors: Programming Languages, Undergraduate Students, Learning Processes, Teaching Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sales, Adam C.; Prihar, Ethan B.; Gagnon-Bartsch, Johann A.; Heffernan, Neil T. – Journal of Educational Data Mining, 2023
Randomized A/B tests within online learning platforms represent an exciting direction in learning sciences. With minimal assumptions, they allow causal effect estimation without confounding bias and exact statistical inference even in small samples. However, often experimental samples and/or treatment effects are small, A/B tests are underpowered,…
Descriptors: Data Use, Research Methodology, Randomized Controlled Trials, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pardos, Zachary A.; Dadu, Anant – Journal of Educational Data Mining, 2018
We introduce a model which combines principles from psychometric and connectionist paradigms to allow direct Q-matrix refinement via backpropagation. We call this model dAFM, based on augmentation of the original Additive Factors Model (AFM), whose calculations and constraints we show can be exactly replicated within the framework of neural…
Descriptors: Q Methodology, Psychometrics, Models, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Levin, Nathan A. – Journal of Educational Data Mining, 2021
The Big Data for Education Spoke of the NSF Northeast Big Data Innovation Hub and ETS co-sponsored an educational data mining competition in which contestants were asked to predict efficient time use on the NAEP 8th grade mathematics computer-based assessment, based on the log file of a student's actions on a prior portion of the assessment. In…
Descriptors: Learning Analytics, Data Collection, Competition, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Berens, Johannes; Schneider, Kerstin; Gortz, Simon; Oster, Simon; Burghoff, Julian – Journal of Educational Data Mining, 2019
To successfully reduce student attrition, it is imperative to understand what the underlying determinants of attrition are and which students are at risk of dropping out. We develop an early detection system (EDS) using administrative student data from a state and private university to predict student dropout as a basis for a targeted…
Descriptors: Risk Management, At Risk Students, Dropout Prevention, College Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Edwards, John; Hart, Kaden; Shrestha, Raj – Journal of Educational Data Mining, 2023
Analysis of programming process data has become popular in computing education research and educational data mining in the last decade. This type of data is quantitative, often of high temporal resolution, and it can be collected non-intrusively while the student is in a natural setting. Many levels of granularity can be obtained, such as…
Descriptors: Data Analysis, Computer Science Education, Learning Analytics, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Guo, Hongwen; Zhang, Mo; Deane, Paul; Bennett, Randy E. – Journal of Educational Data Mining, 2020
This study investigates the effects of a scenario-based assessment design on students' writing processes. An experimental data set consisting of four design conditions was used in which the number of scenarios (one or two) and the placement of the essay task with respect to the lead-in tasks (first vs. last) were varied. Students' writing…
Descriptors: Instructional Effectiveness, Vignettes, Writing Processes, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paassen, Benjamin; Hammer, Barbara; Price, Thomas William; Barnes, Tiffany; Gross, Sebastian; Pinkwart, Niels – Journal of Educational Data Mining, 2018
Intelligent tutoring systems can support students in solving multi-step tasks by providing hints regarding what to do next. However, engineering such next-step hints manually or via an expert model becomes infeasible if the space of possible states is too large. Therefore, several approaches have emerged to infer next-step hints automatically,…
Descriptors: Intelligent Tutoring Systems, Cues, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mühling, Andreas – Journal of Educational Data Mining, 2017
This article presents "concept landscapes"--a novel way of investigating the state and development of knowledge structures in groups of persons using concept maps. Instead of focusing on the assessment and evaluation of single maps, the data of many persons is aggregated and data mining approaches are used in analysis. New insights into…
Descriptors: Concept Mapping, Data Collection, Electronic Publishing, Educational Theories
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schneider, Bertrand; Blikstein, Paulo – Journal of Educational Data Mining, 2015
In this paper, we describe multimodal learning analytics (MMLA) techniques to analyze data collected around an interactive learning environment. In a previous study (Schneider & Blikstein, submitted), we designed and evaluated a Tangible User Interface (TUI) where dyads of students were asked to learn about the human hearing system by…
Descriptors: Educational Research, Data Collection, Data Analysis, Educational Environment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Knowles, Jared E. – Journal of Educational Data Mining, 2015
The state of Wisconsin has one of the highest four year graduation rates in the nation, but deep disparities among student subgroups remain. To address this the state has created the Wisconsin Dropout Early Warning System (DEWS), a predictive model of student dropout risk for students in grades six through nine. The Wisconsin DEWS is in use…
Descriptors: Dropouts, Models, Prediction, Risk
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Ran; Koedinger, Kenneth R. – Journal of Educational Data Mining, 2017
As the use of educational technology becomes more ubiquitous, an enormous amount of learning process data is being produced. Educational data mining seeks to analyze and model these data, with the ultimate goal of improving learning outcomes. The most firmly grounded and rigorous evaluation of an educational data mining discovery is whether it…
Descriptors: Educational Technology, Technology Uses in Education, Data Collection, Data Analysis
Previous Page | Next Page »
Pages: 1  |  2