NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Journal of Educational and…25
Publication Type
Journal Articles25
Reports - Research25
Audience
Location
New York1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 25 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nestler, Steffen; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2022
The social relations model (SRM) is very often used in psychology to examine the components, determinants, and consequences of interpersonal judgments and behaviors that arise in social groups. The standard SRM was developed to analyze cross-sectional data. Based on a recently suggested integration of the SRM with structural equation models (SEM)…
Descriptors: Interpersonal Relationship, Longitudinal Studies, Data Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Ulitzsch, Esther; He, Qiwei; Pohl, Steffi – Journal of Educational and Behavioral Statistics, 2022
Interactive tasks designed to elicit real-life problem-solving behavior are rapidly becoming more widely used in educational assessment. Incorrect responses to such tasks can occur for a variety of different reasons such as low proficiency levels, low metacognitive strategies, or motivational issues. We demonstrate how behavioral patterns…
Descriptors: Behavior Patterns, Problem Solving, Failure, Adults
Peer reviewed Peer reviewed
Direct linkDirect link
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Jin – Journal of Educational and Behavioral Statistics, 2022
Longitudinal data analysis has been widely employed to examine between-individual differences in within-individual changes. One challenge of such analyses is that the rate-of-change is only available indirectly when change patterns are nonlinear with respect to time. Latent change score models (LCSMs), which can be employed to investigate the…
Descriptors: Longitudinal Studies, Individual Differences, Scores, Models
Wang, Chun; Nydick, Steven W. – Journal of Educational and Behavioral Statistics, 2020
Recent work on measuring growth with categorical outcome variables has combined the item response theory (IRT) measurement model with the latent growth curve model and extended the assessment of growth to multidimensional IRT models and higher order IRT models. However, there is a lack of synthetic studies that clearly evaluate the strength and…
Descriptors: Item Response Theory, Longitudinal Studies, Comparative Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Harel, Daphna; Steele, Russell J. – Journal of Educational and Behavioral Statistics, 2018
Collapsing categories is a commonly used data reduction technique; however, to date there do not exist principled methods to determine whether collapsing categories is appropriate in practice. With ordinal responses under the partial credit model, when collapsing categories, the true model for the collapsed data is no longer a partial credit…
Descriptors: Matrices, Models, Item Response Theory, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Patton, Jeffrey M.; Cheng, Ying; Hong, Maxwell; Diao, Qi – Journal of Educational and Behavioral Statistics, 2019
In psychological and survey research, the prevalence and serious consequences of careless responses from unmotivated participants are well known. In this study, we propose to iteratively detect careless responders and cleanse the data by removing their responses. The careless responders are detected using person-fit statistics. In two simulation…
Descriptors: Test Items, Response Style (Tests), Identification, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2021
Large-scale assessments (LSAs) use Mislevy's "plausible value" (PV) approach to relate student proficiency to noncognitive variables administered in a background questionnaire. This method requires background variables to be completely observed, a requirement that is seldom fulfilled. In this article, we evaluate and compare the…
Descriptors: Data Analysis, Error of Measurement, Research Problems, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, David; Su, Dan – Journal of Educational and Behavioral Statistics, 2016
This article presents findings on the consequences of matrix sampling of context questionnaires for the generation of plausible values in large-scale assessments. Three studies are conducted. Study 1 uses data from PISA 2012 to examine several different forms of missing data imputation within the chained equations framework: predictive mean…
Descriptors: Sampling, Questionnaires, Measurement, International Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2018
A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…
Descriptors: Skill Development, Cognitive Measurement, Cognitive Processes, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Reardon, Sean F.; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2015
In an earlier paper, we presented methods for estimating achievement gaps when test scores are coarsened into a small number of ordered categories, preventing fine-grained distinctions between individual scores. We demonstrated that gaps can nonetheless be estimated with minimal bias across a broad range of simulated and real coarsened data…
Descriptors: Achievement Gap, Performance Factors, Educational Practices, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Wen; Kwok, Oi-man – Journal of Educational and Behavioral Statistics, 2012
In longitudinal multilevel studies, especially in educational settings, it is fairly common that participants change their group memberships over time (e.g., students switch to different schools). Participant's mobility changes the multilevel data structure from a purely hierarchical structure with repeated measures nested within individuals and…
Descriptors: Mobility, Statistical Analysis, Models, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Jing; Stokes, S. Lynne; Zhang, Song – Journal of Educational and Behavioral Statistics, 2010
We develop a Bayesian hierarchical model for the analysis of ordinal data from multirater ranking studies. The model for a rater's score includes four latent factors: one is a latent item trait determining the true order of items and the other three are the rater's performance characteristics, including bias, discrimination, and measurement error…
Descriptors: Bayesian Statistics, Data Analysis, Bias, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Jin, Hui; Barnard, John; Rubin, Donald B. – Journal of Educational and Behavioral Statistics, 2010
Missing data, especially when coupled with noncompliance, are a challenge even in the setting of randomized experiments. Although some existing methods can address each complication, it can be difficult to handle both of them simultaneously. This is true in the example of the New York City School Choice Scholarship Program, where both the…
Descriptors: Urban Schools, School Choice, Scholarships, Principals
Previous Page | Next Page »
Pages: 1  |  2