NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mair, Patrick; Satorra, Albert; Bentler, Peter M. – Multivariate Behavioral Research, 2012
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
Descriptors: Structural Equation Models, Data, Monte Carlo Methods, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Kelcey, Ben – Multivariate Behavioral Research, 2011
This study examined the practical problem of covariate selection in propensity scores (PSs) given a predetermined set of covariates. Because the bias reduction capacity of a confounding covariate is proportional to the concurrent relationships it has with the outcome and treatment, particular focus is set on how we might approximate…
Descriptors: Probability, Scores, Predictor Variables, Selection
Peer reviewed Peer reviewed
Direct linkDirect link
Ruscio, John; Gera, Benjamin Lee – Multivariate Behavioral Research, 2013
Researchers are strongly encouraged to accompany the results of statistical tests with appropriate estimates of effect size. For 2-group comparisons, a probability-based effect size estimator ("A") has many appealing properties (e.g., it is easy to understand, robust to violations of parametric assumptions, insensitive to outliers). We review…
Descriptors: Psychological Studies, Gender Differences, Researchers, Test Results
Peer reviewed Peer reviewed
Direct linkDirect link
Ruscio, John; Mullen, Tara – Multivariate Behavioral Research, 2012
It is good scientific practice to the report an appropriate estimate of effect size and a confidence interval (CI) to indicate the precision with which a population effect was estimated. For comparisons of 2 independent groups, a probability-based effect size estimator (A) that is equal to the area under a receiver operating characteristic curve…
Descriptors: Computation, Statistical Analysis, Probability, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lam, Kar Yin; Koning, Alex J.; Franses, Philip Hans – Multivariate Behavioral Research, 2011
We consider the estimation of probabilistic ranking models in the context of conjoint experiments. By using approximate rather than exact ranking probabilities, we avoided the computation of high-dimensional integrals. We extended the approximation technique proposed by Henery (1981) in the context of the Thurstone-Mosteller-Daniels model to any…
Descriptors: Probability, Evaluation Research, Computation, Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Jo, Booil; Stuart, Elizabeth A.; MacKinnon, David P.; Vinokur, Amiram D. – Multivariate Behavioral Research, 2011
Mediation analysis uses measures of hypothesized mediating variables to test theory for how a treatment achieves effects on outcomes and to improve subsequent treatments by identifying the most efficient treatment components. Most current mediation analysis methods rely on untested distributional and functional form assumptions for valid…
Descriptors: Probability, Scores, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Lottridge, Susan M.; Nicewander, W. Alan; Mitzel, Howard C. – Multivariate Behavioral Research, 2011
This inquiry had 2 components: (1) the first was substantive and focused on the comparability of paper-based and computer-based test forms and (2) the second was a within-study comparison wherein a quasi-experimental method, propensity score matching, was compared with a credible benchmark method, a within-subjects design. The tests used in the…
Descriptors: Comparative Analysis, Probability, Scores, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Pek, Jolynn; Sterba, Sonya K.; Kok, Bethany E.; Bauer, Daniel J. – Multivariate Behavioral Research, 2009
The graphical presentation of any scientific finding enhances its description, interpretation, and evaluation. Research involving latent variables is no exception, especially when potential nonlinear effects are suspect. This article has multiple aims. First, it provides a nontechnical overview of a semiparametric approach to modeling nonlinear…
Descriptors: Structural Equation Models, Cognitive Processes, Social Sciences, Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2011
Propensity score methods allow investigators to estimate causal treatment effects using observational or nonrandomized data. In this article we provide a practical illustration of the appropriate steps in conducting propensity score analyses. For illustrative purposes, we use a sample of current smokers who were discharged alive after being…
Descriptors: Smoking, Hospitals, Program Effectiveness, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas – Multivariate Behavioral Research, 2011
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Descriptors: Monte Carlo Methods, Patients, Probability, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Markus, Keith A. – Multivariate Behavioral Research, 2008
One can distinguish statistical models used in causal modeling from the causal interpretations that align them with substantive hypotheses. Causal modeling typically assumes an efficient causal interpretation of the statistical model. Causal modeling can also make use of mereological causal interpretations in which the state of the parts…
Descriptors: Research Design, Structural Equation Models, Data Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Loken, Eric – Multivariate Behavioral Research, 2004
Mixture models are appropriate for data that arise from a set of qualitatively different subpopulations. In this study, latent class analysis was applied to observational data from a laboratory assessment of infant temperament at four months of age. The EM algorithm was used to fit the models, and the Bayesian method of posterior predictive checks…
Descriptors: Probability, Personality, Infants, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Schmitt, J. Eric; Mehta, Paras D.; Aggen, Steven H.; Kubarych, Thomas S.; Neale, Michael C. – Multivariate Behavioral Research, 2006
Ordered latent class analysis (OLCA) can be used to approximate unidimensional latent distributions. The main objective of this study is to evaluate the method of OLCA in detecting non-normality of an unobserved continuous variable (i.e., a common factor) used to explain the covariation between dichotomous item-level responses. Using simulation,…
Descriptors: Probability, Sample Size, Effect Size, Depression (Psychology)
Peer reviewed Peer reviewed
Direct linkDirect link
Maydeu-Olivares, Albert; Hernandez, Adolfo; McDonald, Roderick P. – Multivariate Behavioral Research, 2006
We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model…
Descriptors: Scoring, Probability, Goodness of Fit, Life Satisfaction
Peer reviewed Peer reviewed
Everitt, B. S. – Multivariate Behavioral Research, 1981
Results show that the proposed sampling distribution of the test appears to be appropriate only for sample sizes above 50, and for data where the sample size is 10 times the number of variables. For such cases the power of the test is found to be fairly low. (Author/RL)
Descriptors: Mathematical Formulas, Maximum Likelihood Statistics, Monte Carlo Methods, Multivariate Analysis
Previous Page | Next Page ยป
Pages: 1  |  2