Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 7 |
| Since 2017 (last 10 years) | 7 |
| Since 2007 (last 20 years) | 11 |
Descriptor
| Classification | 12 |
| Structural Equation Models | 5 |
| Error of Measurement | 4 |
| Factor Analysis | 4 |
| Goodness of Fit | 4 |
| Sample Size | 4 |
| Accuracy | 3 |
| Computation | 3 |
| Evaluation Methods | 3 |
| Simulation | 3 |
| Bayesian Statistics | 2 |
| More ▼ | |
Source
| Structural Equation Modeling:… | 12 |
Author
| Muthen, Bengt | 2 |
| Aaron T. McLaughlin | 1 |
| Abar, Beau | 1 |
| Asparouhov, Tihomir | 1 |
| Beauducel, Andre | 1 |
| Ben Kelcey | 1 |
| Benjamin Lugu | 1 |
| Christa Winkler | 1 |
| Chunhua Cao | 1 |
| Dan Wei | 1 |
| Daniel McNeish | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 12 |
| Reports - Research | 12 |
Education Level
| Grade 9 | 1 |
| High Schools | 1 |
| Higher Education | 1 |
| Secondary Education | 1 |
Audience
| Researchers | 1 |
Location
| Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Russell P. Houpt; Kevin J. Grimm; Aaron T. McLaughlin; Daryl R. Van Tongeren – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Numerous methods exist to determine the optimal number of classes when using latent profile analysis (LPA), but none are consistently correct. Recently, the likelihood incremental percentage per parameter (LI3P) was proposed as a model effect-size measure. To evaluate the LI3P more thoroughly, we simulated 50,000 datasets, manipulating factors…
Descriptors: Structural Equation Models, Profiles, Sample Size, Evaluation Methods
Dan Wei; Peida Zhan; Hongyun Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In latent growth curve modeling (LGCM), overall fit indices have garnered increased disputation for model selection, and model fit evaluation based on the mean structure has becoming popularity. The present study developed a versatile fit index, named Weighted Root Mean Squared Errors (WRMSE), based on individual case residuals (ICRs) with the aim…
Descriptors: Structural Equation Models, Goodness of Fit, Error of Measurement, Computation
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement
Minjung Kim; Christa Winkler; James Uanhoro; Joshua Peri; John Lochman – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Cluster memberships associated with the mediation effect are often changed due to the temporal distance between the cause-and-effect variables in longitudinal data. Nevertheless, current practices in multilevel mediation analysis mostly assume a purely hierarchical data structure. A Monte Carlo simulation study is conducted to examine the…
Descriptors: Hierarchical Linear Modeling, Mediation Theory, Multivariate Analysis, Causal Models
Yuanfang Liu; Mark H. C. Lai; Ben Kelcey – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance holds when a latent construct is measured in the same way across different levels of background variables (continuous or categorical) while controlling for the true value of that construct. Using Monte Carlo simulation, this paper compares the multiple indicators, multiple causes (MIMIC) model and MIMIC-interaction to a…
Descriptors: Classification, Accuracy, Error of Measurement, Correlation
Abar, Beau; Loken, Eric – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Latent class models are becoming more popular in behavioral research. When models with a large number of latent classes relative to the number of manifest indicators are estimated, researchers must consider the possibility that the model is not identified. It is not enough to determine that the model has positive degrees of freedom. A well-known…
Descriptors: Probability, Statistical Bias, Multivariate Analysis, Models
Lubke, Gitta; Tueller, Stephen – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Taxometric procedures such as MAXEIG and factor mixture modeling (FMM) are used in latent class clustering, but they have very different sets of strengths and weaknesses. Taxometric procedures, popular in psychiatric and psychopathology applications, do not rely on distributional assumptions. Their sole purpose is to detect the presence of latent…
Descriptors: Classification, Models, Statistical Analysis, Comparative Analysis
Henry, Kimberly L.; Muthen, Bengt – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Latent class analysis (LCA) is a statistical method used to identify subtypes of related cases using a set of categorical or continuous observed variables. Traditional LCA assumes that observations are independent. However, multilevel data structures are common in social and behavioral research and alternative strategies are needed. In this…
Descriptors: Statistical Analysis, Probability, Classification, Grade 9
Marsh, Herbert W.; Muthen, Bengt; Asparouhov, Tihomir; Ludtke, Oliver; Robitzsch, Alexander; Morin, Alexandre J. S.; Trautwein, Ulrich – Structural Equation Modeling: A Multidisciplinary Journal, 2009
This study is a methodological-substantive synergy, demonstrating the power and flexibility of exploratory structural equation modeling (ESEM) methods that integrate confirmatory and exploratory factor analyses (CFA and EFA), as applied to substantively important questions based on multidimentional students' evaluations of university teaching…
Descriptors: Feedback (Response), Class Size, Structural Equation Models, Construct Validity
Beauducel, Andre; Herzberg, Philipp Yorck – Structural Equation Modeling: A Multidisciplinary Journal, 2006
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Classification, Sample Size

Peer reviewed
Direct link
