Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 6 |
Descriptor
Error Patterns | 6 |
Structural Equation Models | 5 |
Evaluation Methods | 4 |
Simulation | 4 |
Computation | 3 |
Monte Carlo Methods | 3 |
Testing | 3 |
Evaluation Research | 2 |
Matrices | 2 |
Models | 2 |
Behavioral Science Research | 1 |
More ▼ |
Source
Structural Equation Modeling:… | 6 |
Author
Enders, Craig K. | 1 |
Fagan, Abigail A. | 1 |
Feaster, Daniel J. | 1 |
Hawkins, J. David | 1 |
Howe, George | 1 |
Jaki, Thomas | 1 |
Jones-Farmer, L. Allison | 1 |
Kim, Eun Sook | 1 |
Kwok, Oi-man | 1 |
MacKinnon, David P. | 1 |
Masyn, Katherine | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 6 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kim, Eun Sook; Kwok, Oi-man; Yoon, Myeongsun – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Testing factorial invariance has recently gained more attention in different social science disciplines. Nevertheless, when examining factorial invariance, it is generally assumed that the observations are independent of each other, which might not be always true. In this study, we examined the impact of testing factorial invariance in multilevel…
Descriptors: Monte Carlo Methods, Testing, Social Science Research, Factor Structure
Not Quite Normal: Consequences of Violating the Assumption of Normality in Regression Mixture Models
Van Horn, M. Lee; Smith, Jessalyn; Fagan, Abigail A.; Jaki, Thomas; Feaster, Daniel J.; Masyn, Katherine; Hawkins, J. David; Howe, George – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Regression mixture models, which have only recently begun to be used in applied research, are a new approach for finding differential effects. This approach comes at the cost of the assumption that error terms are normally distributed within classes. This study uses Monte Carlo simulations to explore the effects of relatively minor violations of…
Descriptors: Structural Equation Models, Home Management, Drug Abuse, Research Methodology
Enders, Craig K.; Tofighi, Davood – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The purpose of this study was to examine the impact of misspecifying a growth mixture model (GMM) by assuming that Level-1 residual variances are constant across classes, when they do, in fact, vary in each subpopulation. Misspecification produced bias in the within-class growth trajectories and variance components, and estimates were…
Descriptors: Structural Equation Models, Computation, Monte Carlo Methods, Evaluation Methods
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Normal theory maximum likelihood (ML) is by far the most popular estimation and testing method used in structural equation modeling (SEM), and it is the default in most SEM programs. Even though this approach assumes multivariate normality of the data, its use can be justified on the grounds that it is fairly robust to the violations of the…
Descriptors: Structural Equation Models, Testing, Factor Analysis, Maximum Likelihood Statistics
Williams, Jason; MacKinnon, David P. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Recent advances in testing mediation have found that certain resampling methods and tests based on the mathematical distribution of 2 normal random variables substantially outperform the traditional "z" test. However, these studies have primarily focused only on models with a single mediator and 2 component paths. To address this limitation, a…
Descriptors: Intervals, Testing, Predictor Variables, Effect Size
Jones-Farmer, L. Allison; Pitts, Jennifer P.; Rainer, R. Kelly – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Although SAS PROC CALIS is not designed to perform multigroup comparisons, it is believed that SAS can be "tricked" into doing so for groups of equal size. At present, there are no comprehensive examples of the steps involved in performing a multigroup comparison in SAS. The purpose of this article is to illustrate these steps. We demonstrate…
Descriptors: Goodness of Fit, Structural Equation Models, Measurement Techniques, Interpersonal Communication