NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Naoto Yamashita – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Matrix decomposition structural equation modeling (MDSEM) is introduced as a novel approach in structural equation modeling, contrasting with traditional structural equation modeling (SEM). MDSEM approximates the data matrix using a model generated by the hypothetical model and addresses limitations faced by conventional SEM procedures by…
Descriptors: Structural Equation Models, Factor Structure, Robustness (Statistics), Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Sara Dhaene; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In confirmatory factor analysis (CFA), model parameters are usually estimated by iteratively minimizing the Maximum Likelihood (ML) fit function. In optimal circumstances, the ML estimator yields the desirable statistical properties of asymptotic unbiasedness, efficiency, normality, and consistency. In practice, however, real-life data tend to be…
Descriptors: Factor Analysis, Factor Structure, Maximum Likelihood Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Cross-loadings are common in multiple-factor confirmatory factor analysis (CFA) but often ignored in measurement invariance testing. This study examined the impact of ignoring cross-loadings on the sensitivity of fit measures (CFI, RMSEA, SRMR, SRMRu, AIC, BIC, SaBIC, LRT) to measurement noninvariance. The manipulated design factors included the…
Descriptors: Goodness of Fit, Error of Measurement, Sample Size, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Xijuan Zhang; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A full structural equation model (SEM) typically consists of both a measurement model (describing relationships between latent variables and observed scale items) and a structural model (describing relationships among latent variables). However, often researchers are primarily interested in testing hypotheses related to the structural model while…
Descriptors: Structural Equation Models, Goodness of Fit, Robustness (Statistics), Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Eunsook Kim; Diep Nguyen; Siyu Liu; Yan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Factor mixture modeling (FMM) is generally complex with both unobserved categorical and unobserved continuous variables. We explore the potential of item parceling to reduce the model complexity of FMM and improve convergence and class enumeration accordingly. To this end, we conduct Monte Carlo simulations with three types of data, continuous,…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Chi-square tests based on maximum likelihood (ML) estimation of covariance structures often incorrectly over-reject the null hypothesis: [sigma] = [sigma(theta)] when the sample size is small. Reweighted least squares (RLS) avoids this problem. In some models, the vector of parameter must contain means, variances, and covariances, yet whether RLS…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Eun Sook; Kwok, Oi-man; Yoon, Myeongsun – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Testing factorial invariance has recently gained more attention in different social science disciplines. Nevertheless, when examining factorial invariance, it is generally assumed that the observations are independent of each other, which might not be always true. In this study, we examined the impact of testing factorial invariance in multilevel…
Descriptors: Monte Carlo Methods, Testing, Social Science Research, Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Molenaar, Dylan; Dolan, Conor V.; van der Maas, Han L. J. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
In this article we present factor models to test for ability differentiation. Ability differentiation predicts that the size of IQ subtest correlations decreases as a function of the general intelligence factor. In the Schmid-Leiman decomposition of the second-order factor model, we model differentiation by introducing heteroscedastic residuals,…
Descriptors: Factor Structure, Models, Intelligence Quotient, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Alessandri, Guido; Vecchione, Michele; Fagnani, Corrado; Bentler, Peter M.; Barbaranelli, Claudio; Medda, Emanuela; Nistico, Lorenza; Stazi, Maria Antonietta; Caprara, Gian Vittorio – Structural Equation Modeling: A Multidisciplinary Journal, 2010
When a self-report instrument includes a balanced number of positively and negatively worded items, factor analysts often use method effect factors to aid model fitting. One of the most widely investigated sources of method effects stems from the respondent tendencies to agree with an item regardless of its content. The nature of these effects,…
Descriptors: Measurement Techniques, Attitude Measures, Twins, Genetics
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Kouros, Chrystyna D.; Kelley, Ken – Structural Equation Modeling: A Multidisciplinary Journal, 2008
When a covariance structure model is misspecified, parameter estimates will be affected. It is important to know which estimates are systematically affected and which are not. The approach of analyzing the path is both intuitive and informative for such a purpose. Different from path analysis, analyzing the path uses path tracing and elementary…
Descriptors: Computation, Structural Equation Models, Statistical Bias, Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Meade, Adam W.; Bauer, Daniel J. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
This study investigates the effects of sample size, factor overdetermination, and communality on the precision of factor loading estimates and the power of the likelihood ratio test of factorial invariance in multigroup confirmatory factor analysis. Although sample sizes are typically thought to be the primary determinant of precision and power,…
Descriptors: Sample Size, Factor Structure, Factor Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yoon, Myeongsun; Millsap, Roger E. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
In testing factorial invariance, researchers have often used a reference variable strategy in which the factor loading for a variable (i.e., reference variable) is fixed to 1 for identification. This commonly used method can be misleading if the chosen reference variable is actually a noninvariant item. This simulation study suggests an…
Descriptors: Item Analysis, Testing, Monte Carlo Methods, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Vlachopoulos, Symeon P. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This study examined the extent of measurement invariance of the Basic Psychological Needs in Exercise Scale responses (BPNES; Vlachopoulos & Michailidou, 2006) across male (n = 716) and female (n = 1,147) exercise participants. BPNES responses from exercise participants attending private fitness centers (n = 1,012) and community exercise programs…
Descriptors: Psychological Patterns, Factor Structure, Measures (Individuals), Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Byrne, Barbara M.; Stewart, Sunita M. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
The overarching intent of this article is to exemplify strategies associated with tests for measurement invariance that are uncommonly applied and reported in the extant literature. Designed within a pedagogical framework, the primary purposes are 3-fold and illustrate (a) tests for measurement invariance based on the analysis of means and…
Descriptors: Factor Structure, Item Response Theory, Testing, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lippke, Sonia; Nigg, Claudio R.; Maddock, Jay E. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
This is the first study to test whether the stages of change of the transtheoretical model are qualitatively different through exploring discontinuity patterns in theory of planned behavior (TPB) variables using latent multigroup structural equation modeling (MSEM) with AMOS. Discontinuity patterns in terms of latent means and prediction patterns…
Descriptors: Physical Activities, Structural Equation Models, Physical Activity Level, Prediction
Previous Page | Next Page ยป
Pages: 1  |  2