Publication Date
In 2025 | 6 |
Since 2024 | 35 |
Since 2021 (last 5 years) | 74 |
Since 2016 (last 10 years) | 76 |
Since 2006 (last 20 years) | 76 |
Descriptor
Accuracy | 76 |
Algorithms | 76 |
Artificial Intelligence | 44 |
Prediction | 30 |
Models | 24 |
Classification | 15 |
Bayesian Statistics | 13 |
Learning Analytics | 13 |
Computer Software | 12 |
Foreign Countries | 11 |
Academic Achievement | 10 |
More ▼ |
Source
Author
Chun Wang | 4 |
Gongjun Xu | 3 |
Jing Lu | 2 |
Jiwei Zhang | 2 |
A. Brooks Bowden | 1 |
A. M. Sadek | 1 |
Aammou, Souhaib | 1 |
Abd-Ellatif, Laila | 1 |
Abdelgaber, Sayed | 1 |
Abdelhadi Raihani | 1 |
Abdessamad Chanaa | 1 |
More ▼ |
Publication Type
Reports - Research | 76 |
Journal Articles | 64 |
Speeches/Meeting Papers | 3 |
Tests/Questionnaires | 1 |
Education Level
Audience
Policymakers | 1 |
Researchers | 1 |
Location
Africa | 2 |
Asia | 2 |
Europe | 2 |
South Korea | 2 |
United States | 2 |
Australia | 1 |
Estonia | 1 |
India | 1 |
Latin America | 1 |
Massachusetts (Boston) | 1 |
Netherlands | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 4 |
Big Five Inventory | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Jose M. Pavía; Rafael Romero – Sociological Methods & Research, 2024
The estimation of RxC ecological inference contingency tables from aggregate data is one of the most salient and challenging problems in the field of quantitative social sciences, with major solutions proposed from both the ecological regression and the mathematical programming frameworks. In recent decades, there has been a drive to find…
Descriptors: Elections, Voting, Social Science Research, Programming
Laura E. Matzen; Zoe N. Gastelum; Breannan C. Howell; Kristin M. Divis; Mallory C. Stites – Cognitive Research: Principles and Implications, 2024
This study addressed the cognitive impacts of providing correct and incorrect machine learning (ML) outputs in support of an object detection task. The study consisted of five experiments that manipulated the accuracy and importance of mock ML outputs. In each of the experiments, participants were given the T and L task with T-shaped targets and…
Descriptors: Artificial Intelligence, Error Patterns, Decision Making, Models
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Ranger, Jochen; Schmidt, Nico; Wolgast, Anett – Educational and Psychological Measurement, 2023
Recent approaches to the detection of cheaters in tests employ detectors from the field of machine learning. Detectors based on supervised learning algorithms achieve high accuracy but require labeled data sets with identified cheaters for training. Labeled data sets are usually not available at an early stage of the assessment period. In this…
Descriptors: Identification, Cheating, Information Retrieval, Tests
Hall, Michelle; Lees, Melinda; Serich, Cameron; Hunt, Richard – National Centre for Vocational Education Research (NCVER), 2023
This paper summarises exploratory analysis undertaken to evaluate the effectiveness of using machine learning approaches to calculate projected completion rates for vocational education and training (VET) programs, and compares this with the current approach used at the National Centre for Vocational Education Research (NCVER) -- Markov chains…
Descriptors: Vocational Education, Graduation Rate, Artificial Intelligence, Prediction
Stacey Lynn von Winckelmann – Information and Learning Sciences, 2023
Purpose: This study aims to explore the perception of algorithm accuracy among data professionals in higher education. Design/methodology/approach: Social justice theory guided the qualitative descriptive study and emphasized four principles: access, participation, equity and human rights. Data collection included eight online open-ended…
Descriptors: Prediction, Algorithms, Racism, Accuracy
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Daniel J. Carragher; Daniel Sturman; Peter J. B. Hancock – Cognitive Research: Principles and Implications, 2024
The human face is commonly used for identity verification. While this task was once exclusively performed by humans, technological advancements have seen automated facial recognition systems (AFRS) integrated into many identification scenarios. Although many state-of-the-art AFRS are exceptionally accurate, they often require human oversight or…
Descriptors: Automation, Human Body, Man Machine Systems, Accuracy
Pan, Yiqin; Livne, Oren; Wollack, James A.; Sinharay, Sandip – Educational Measurement: Issues and Practice, 2023
In computerized adaptive testing, overexposure of items in the bank is a serious problem and might result in item compromise. We develop an item selection algorithm that utilizes the entire bank well and reduces the overexposure of items. The algorithm is based on collaborative filtering and selects an item in two stages. In the first stage, a set…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Algorithms
Franz Classe; Christoph Kern – Educational and Psychological Measurement, 2024
We develop a "latent variable forest" (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on "confirmatory factor analysis" (CFA) models with ordinal and/or numerical response variables. Through parametric model…
Descriptors: Algorithms, Item Response Theory, Artificial Intelligence, Factor Analysis