Publication Date
In 2025 | 1 |
Since 2024 | 7 |
Since 2021 (last 5 years) | 13 |
Since 2016 (last 10 years) | 30 |
Since 2006 (last 20 years) | 42 |
Descriptor
Source
Author
Adam Sales | 2 |
Al Otaiba, Stephanie | 2 |
Anthony F. Botelho | 2 |
Avery H. Closser | 2 |
Gatlin, Brandy | 2 |
Jiao, Hong | 2 |
Kim, Young-Suk | 2 |
Wanzek, Jeanne | 2 |
Adrienne D. Woods | 1 |
Atitya, Ben | 1 |
Baird, Jo-Anne | 1 |
More ▼ |
Publication Type
Reports - Research | 42 |
Journal Articles | 36 |
Speeches/Meeting Papers | 3 |
Information Analyses | 1 |
Tests/Questionnaires | 1 |
Education Level
Elementary Education | 8 |
Early Childhood Education | 5 |
Higher Education | 5 |
Postsecondary Education | 5 |
Primary Education | 5 |
Grade 3 | 4 |
Secondary Education | 3 |
Grade 2 | 2 |
Intermediate Grades | 2 |
Middle Schools | 2 |
Grade 1 | 1 |
More ▼ |
Audience
Location
Germany | 2 |
Netherlands | 2 |
Australia | 1 |
Belgium | 1 |
California | 1 |
China (Beijing) | 1 |
Georgia | 1 |
Germany (Berlin) | 1 |
Iran | 1 |
Japan | 1 |
Massachusetts (Boston) | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
Cox, Kyle; Kelcey, Benjamin – Educational and Psychological Measurement, 2023
Multilevel structural equation models (MSEMs) are well suited for educational research because they accommodate complex systems involving latent variables in multilevel settings. Estimation using Croon's bias-corrected factor score (BCFS) path estimation has recently been extended to MSEMs and demonstrated promise with limited sample sizes. This…
Descriptors: Structural Equation Models, Educational Research, Hierarchical Linear Modeling, Sample Size
Mangino, Anthony A.; Finch, W. Holmes – Educational and Psychological Measurement, 2021
Oftentimes in many fields of the social and natural sciences, data are obtained within a nested structure (e.g., students within schools). To effectively analyze data with such a structure, multilevel models are frequently employed. The present study utilizes a Monte Carlo simulation to compare several novel multilevel classification algorithms…
Descriptors: Prediction, Hierarchical Linear Modeling, Classification, Bayesian Statistics
Sarah E. Robertson; Jon A. Steingrimsson; Issa J. Dahabreh – Evaluation Review, 2024
When planning a cluster randomized trial, evaluators often have access to an enumerated cohort representing the target population of clusters. Practicalities of conducting the trial, such as the need to oversample clusters with certain characteristics in order to improve trial economy or support inferences about subgroups of clusters, may preclude…
Descriptors: Randomized Controlled Trials, Generalization, Inferences, Hierarchical Linear Modeling
Yi Feng; Peter M. Steiner – Society for Research on Educational Effectiveness, 2022
Research Context: In educational research, "context effects" are often of inferential interest to researchers as well as of evaluative interest to policymakers. While student education outcomes likely depend on individual-level influences like individual academic achievement, school contexts may also make a difference. Such questions are…
Descriptors: Hierarchical Linear Modeling, Accuracy, Graphs, Educational Research
Avery H. Closser; Adam Sales; Anthony F. Botelho – Grantee Submission, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data on study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Avery H. Closser; Adam Sales; Anthony F. Botelho – Educational Technology Research and Development, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data to study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Ben Van Dusen; Heidi Cian; Jayson Nissen; Lucy Arellano; Adrienne D. Woods – Sociology of Education, 2024
This investigation examines the efficacy of multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) over fixed-effects models when performing intersectional studies. The research questions are as follows: (1) What are typical strata representation rates and outcomes on physics research-based assessments? (2) To what…
Descriptors: Educational Research, Intersectionality, Critical Race Theory, STEM Education
Hitczenko, Marcin – Sociological Methods & Research, 2022
Researchers interested in studying the frequency of events or behaviors among a population must rely on count data provided by sampled individuals. Often, this involves a decision between live event counting, such as a behavioral diary, and recalled aggregate counts. Diaries are generally more accurate, but their greater cost and respondent burden…
Descriptors: Surveys, Social Science Research, Recall (Psychology), Diaries
Vida, Leonardo J.; Bolsinova, Maria; Brinkhuis, Matthieu J. S. – International Educational Data Mining Society, 2021
The quality of exams drives test-taking behavior of examinees and is a proxy for the quality of teaching. As most university exams have strict time limits, and speededness is an important measure of the cognitive state of examinees, this might be used to assess the connection between exams' quality and examinees' performance. The practice of…
Descriptors: Accuracy, Test Items, Tests, Student Behavior
Keller, Lena; Lüdtke, Oliver; Preckel, Franzis; Brunner, Martin – Educational Psychology Review, 2023
Intersectional approaches have become increasingly important for explaining educational inequalities because they help to improve our understanding of how individual experiences are shaped by simultaneous membership in multiple social categories that are associated with interconnected systems of power, privilege, and oppression. For years, there…
Descriptors: Equal Education, Intersectionality, Hierarchical Linear Modeling, Educational Research
Joo, Seang-Hwane; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2019
Multilevel modeling has been utilized for combining single-case experimental design (SCED) data assuming simple level-1 error structures. The purpose of this study is to compare various multilevel analysis approaches for handling potential complexity in the level-1 error structure within SCED data, including approaches assuming simple and complex…
Descriptors: Hierarchical Linear Modeling, Synthesis, Data Analysis, Accuracy
Kohli, Nidhi; Peralta, Yadira; Zopluoglu, Cengiz; Davison, Mark L. – International Journal of Behavioral Development, 2018
Piecewise mixed-effects models are useful for analyzing longitudinal educational and psychological data sets to model segmented change over time. These models offer an attractive alternative to commonly used quadratic and higher-order polynomial models because the coefficients obtained from fitting the model have meaningful substantive…
Descriptors: Hierarchical Linear Modeling, Longitudinal Studies, Maximum Likelihood Statistics, Bayesian Statistics
Tiffany Wu; Christina Weiland – Society for Research on Educational Effectiveness, 2024
Background/Context: Chronic absenteeism is a serious problem that has been linked to lower academic achievement, diminished socioemotional skills, and an increased likelihood of high school dropout (Allensworth et al., 2021; Gottfried, 2014). As a result, many schools have begun to embrace early warning systems (EWS) as a tool to identify and flag…
Descriptors: Attendance, Early Childhood Education, Intervention, Artificial Intelligence