NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers4
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 67 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Chen Qiu; Michael R. Peabody; Kelly D. Bradley – Measurement: Interdisciplinary Research and Perspectives, 2024
It is meaningful to create a comprehensive score to extract information from mass continuous data when they measure the same latent concept. Therefore, this study adopts the logic of psychometrics to conduct scales on continuous data under the Rasch models. This study also explores the effect of different data discretization methods on scale…
Descriptors: Models, Measurement Techniques, Benchmarking, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mirjam Sophia Glessmer; Rachel Forsyth – Teaching & Learning Inquiry, 2025
Generative AI tools (GenAI) are increasingly used for academic tasks, including qualitative data analysis for the Scholarship of Teaching and Learning (SoTL). In our practice as academic developers, we are frequently asked for advice on whether this use for GenAI is reliable, valid, and ethical. Since this is a new field, we have not been able to…
Descriptors: Artificial Intelligence, Research Methodology, Data Analysis, Scholarship
Peer reviewed Peer reviewed
Direct linkDirect link
Guiyun Feng; Honghui Chen – Education and Information Technologies, 2025
Data mining has been successfully and widely utilized in educational information systems, and an important research field has been formed, which is educational data mining. Process mining inherits the characteristics of data mining which can not only use historical data in the system to analyze learning behavior and predict academic performance,…
Descriptors: Educational Research, Artificial Intelligence, Data Use, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Wenchao Ma; Miguel A. Sorrel; Xiaoming Zhai; Yuan Ge – Journal of Educational Measurement, 2024
Most existing diagnostic models are developed to detect whether students have mastered a set of skills of interest, but few have focused on identifying what scientific misconceptions students possess. This article developed a general dual-purpose model for simultaneously estimating students' overall ability and the presence and absence of…
Descriptors: Models, Misconceptions, Diagnostic Tests, Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Qiuping Peng; Ningfei Wei – International Journal of Information and Communication Technology Education, 2024
In the context of college physical education curriculum reform, fostering students' interest and promoting lifelong physical exercise have become crucial. Aerobics, an integral component of physical education, plays a key role in achieving these objectives. However, existing data flow analysis technologies lack integration, limiting their ability…
Descriptors: College Students, Physical Education, Exercise, Dance
Peer reviewed Peer reviewed
Direct linkDirect link
Nicole Maestas; Tisamarie B. Sherry; Alexander Strand – Journal of Disability Policy Studies, 2024
Opioid use is common among Social Security Disability Insurance (SSDI) beneficiaries, who account for a disproportionate share of opioid-related hospitalizations and mortality in the United States. However, little is known about the prevalence of opioid use prior to SSDI enrollment. Understanding when opioid use is established and how it…
Descriptors: Drug Use, Narcotics, Welfare Services, Insurance
Peer reviewed Peer reviewed
Direct linkDirect link
Suleyman Alpaslan Sulak; Nigmet Koklu – European Journal of Education, 2024
This study employs advanced data mining techniques to investigate the DASS-42 questionnaire, a widely used psychological assessment tool. Administered to 680 students at Necmettin Erbakan University's Ahmet Kelesoglu Faculty of Education, the DASS-42 comprises three distinct subscales--depression, anxiety and stress--each consisting of 14 items.…
Descriptors: Foreign Countries, Algorithms, Information Retrieval, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
XinXiu Yang – International Journal of Information and Communication Technology Education, 2024
The objective of this work is to predict the employment rate of students based on the information in the SSM (student status management) in colleges and universities. Firstly, the relevant content of SSM is introduced. Secondly, the BP (Back Propagation) neural network, the LM (Levenberg Marquardt) algorithm, and the BR (Bayesian Regularization)…
Descriptors: Prediction, Employment Patterns, College Students, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Dake, Delali Kwasi; Gyimah, Esther – Education and Information Technologies, 2023
Text analytics in education has evolved to form a critical component of the future SMART campus architecture. Sentiment analysis and qualitative feedback from students is now a crucial application domain of text analytics relevant to institutions. The implementation of sentiment analysis helps understand learners' appreciation of lessons, which…
Descriptors: Feedback (Response), College Students, Psychological Patterns, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Ning, Xiaoke – International Journal of Web-Based Learning and Teaching Technologies, 2023
With the vigorous development of intelligent campus construction, great changes have taken place in the development of information technology in colleges and universities from the previous digital to intelligent development. In the teaching process, the analysis of students' classroom learning has also changed from the previous manual observation…
Descriptors: College Students, Algorithms, Student Behavior, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Hadis Anahideh; Nazanin Nezami; Abolfazl Asudeh – Grantee Submission, 2025
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness.…
Descriptors: Correlation, Measurement Techniques, Guidelines, Semantics
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5