NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Flesch Reading Ease Formula1
What Works Clearinghouse Rating
Showing 1 to 15 of 49 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xieling Chen; Di Zou; Gary Cheng; Haoran Xie – Education and Information Technologies, 2024
The rise of massive open online courses (MOOCs) brings rich opportunities for understanding learners' experiences based on analyzing learner-generated content such as course reviews. Traditionally, the unstructured textual data is analyzed qualitatively via manual coding, thus failing to offer a timely understanding of the learner's experiences.…
Descriptors: Artificial Intelligence, Semantics, Course Evaluation, MOOCs
Peer reviewed Peer reviewed
Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2024
Assessing students' answers and in particular natural language answers is a crucial challenge in the field of education. Advances in transformer-based models such as Large Language Models (LLMs), have led to significant progress in various natural language tasks. Nevertheless, amidst the growing trend of evaluating LLMs across diverse tasks,…
Descriptors: Student Evaluation, Computer Assisted Testing, Artificial Intelligence, Comprehension
Peer reviewed Peer reviewed
Direct linkDirect link
Ishaya Gambo; Faith-Jane Abegunde; Omobola Gambo; Roseline Oluwaseun Ogundokun; Akinbowale Natheniel Babatunde; Cheng-Chi Lee – Education and Information Technologies, 2025
The current educational system relies heavily on manual grading, posing challenges such as delayed feedback and grading inaccuracies. Automated grading tools (AGTs) offer solutions but come with limitations. To address this, "GRAD-AI" is introduced, an advanced AGT that combines automation with teacher involvement for precise grading,…
Descriptors: Automation, Grading, Artificial Intelligence, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Nga Than; Leanne Fan; Tina Law; Laura K. Nelson; Leslie McCall – Sociological Methods & Research, 2025
Over the past decade, social scientists have adapted computational methods for qualitative text analysis, with the hope that they can match the accuracy and reliability of hand coding. The emergence of GPT and open-source generative large language models (LLMs) has transformed this process by shifting from programming to engaging with models using…
Descriptors: Artificial Intelligence, Coding, Qualitative Research, Cues
Peer reviewed Peer reviewed
Direct linkDirect link
Cindy Royal – Journalism and Mass Communication Educator, 2025
Artificial intelligence (AI) has taken the forefront in discussions of the future of media and education. Although there are valid concerns, AI has the potential to be useful in learning new skills, particularly those related to computer programming. This case study depicts the ways AI was introduced to assist in teaching coding, specifically in a…
Descriptors: Artificial Intelligence, Coding, Programming, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hanneke Theelen; Joyce Vreuls; Jim Rutten – International Journal of Technology in Education, 2024
The rapid development of artificial intelligence and large language models (LLMs) has led to significant advancements in applying machine learning techniques across diverse disciplines, including educational science research. This study investigates the potential of LLMs like ChatGPT for qualitative data analysis, focusing on open, axial,…
Descriptors: Artificial Intelligence, Science Education, Educational Research, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Guohua; Yang, Sien; Huang, Zhiqiu; Yu, Yaoshen; Li, Xin – Education and Information Technologies, 2023
Due to the growing demand for information technology skills, programming education has received increasing attention. Predicting students' programming performance helps teachers realize their teaching effect and students' learning status in time to provide support for students. However, few of the existing researches have taken the code that…
Descriptors: Prediction, Programming, Student Characteristics, Profiles
Peer reviewed Peer reviewed
Direct linkDirect link
Andrew Millam; Christine Bakke – Journal of Information Technology Education: Innovations in Practice, 2024
Aim/Purpose: This paper is part of a multi-case study that aims to test whether generative AI makes an effective coding assistant. Particularly, this work evaluates the ability of two AI chatbots (ChatGPT and Bing Chat) to generate concise computer code, considers ethical issues related to generative AI, and offers suggestions for how to improve…
Descriptors: Coding, Artificial Intelligence, Natural Language Processing, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Shan Li; Xiaoshan Huang; Tingting Wang; Juan Zheng; Susanne P. Lajoie – Journal of Computing in Higher Education, 2025
Coding think-aloud transcripts is time-consuming and labor-intensive. In this study, we examined the feasibility of predicting students' reasoning activities based on their think-aloud transcripts by leveraging the affordances of text mining and machine learning techniques. We collected the think-aloud data of 34 medical students as they diagnosed…
Descriptors: Information Retrieval, Artificial Intelligence, Prediction, Abstract Reasoning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cai, Zhiqiang; Marquart, Cody; Shaffer, David W. – International Educational Data Mining Society, 2022
Regular expression (regex) coding has advantages for text analysis. Humans are often able to quickly construct intelligible coding rules with high precision. That is, researchers can identify words and word patterns that correctly classify examples of a particular concept. And, it is often easy to identify false positives and improve the regex…
Descriptors: Coding, Classification, Artificial Intelligence, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Michael E. Ellis; K. Mike Casey; Geoffrey Hill – Decision Sciences Journal of Innovative Education, 2024
Large Language Model (LLM) artificial intelligence tools present a unique challenge for educators who teach programming languages. While LLMs like ChatGPT have been well documented for their ability to complete exams and create prose, there is a noticeable lack of research into their ability to solve problems using high-level programming…
Descriptors: Artificial Intelligence, Programming Languages, Programming, Homework
Peer reviewed Peer reviewed
Direct linkDirect link
Reagan Mozer; Luke Miratrix – Society for Research on Educational Effectiveness, 2023
Background: For randomized trials that use text as an outcome, traditional approaches for assessing treatment impact require each document first be manually coded for constructs of interest by trained human raters. These hand-coded scores are then used as a measured outcome for an impact analysis, with the average scores of the treatment group…
Descriptors: Artificial Intelligence, Coding, Randomized Controlled Trials, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Mayowa Oyedoyin; Ismaila Temitayo Sanusi; Musa Adekunle Ayanwale – Computer Science Education, 2025
Background and Context: Recognizing that digital technologies can enable economic transformation in Africa, computing education has been considered a subject relevant for all within the compulsory level of education. The implementation of the subject in many schools is, however, characterized by a myriad of challenges, including pedagogical…
Descriptors: Elementary School Students, Student Attitudes, Internet, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mark Frydenberg; Anqi Xu; Jennifer Xu – Information Systems Education Journal, 2025
This study explores student perceptions of learning to code by evaluating AI-generated Python code. In an experimental exercise given to students in an introductory Python course at a business university, students wrote their own solutions to a Python program and then compared their solutions with AI-generated code. They evaluated both solutions…
Descriptors: Student Attitudes, Programming, Computer Software, Quality Assurance
Peer reviewed Peer reviewed
Direct linkDirect link
Shu-Jie Chen; Xiaofen Shan; Ze-Min Liu; Chuang-Qi Chen – Educational Technology & Society, 2025
The introduction of programming education in K-12 schools to promote computational thinking has attracted a great deal of attention from scholars and educators. Debugging code is a central skill for students, but is also a considerable challenge when learning to program. Learners at the K-12 level often lack confidence in programming debugging due…
Descriptors: Programming, Coding, Elementary School Students, Secondary School Students
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4