Publication Date
| In 2026 | 0 |
| Since 2025 | 9 |
| Since 2022 (last 5 years) | 26 |
| Since 2017 (last 10 years) | 43 |
| Since 2007 (last 20 years) | 57 |
Descriptor
Source
Author
| Chris Piech | 2 |
| Paul Denny | 2 |
| Adish Singla | 1 |
| Ahmed Ashraf Butt | 1 |
| Akinbowale Natheniel Babatunde | 1 |
| Alina Deriyeva | 1 |
| Amanda Barany | 1 |
| Andres Felipe Zambrano | 1 |
| Anmin Liu | 1 |
| Anna Rechtácková | 1 |
| Arguedas, Marta | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 58 |
| Journal Articles | 43 |
| Speeches/Meeting Papers | 14 |
| Tests/Questionnaires | 4 |
Education Level
| Higher Education | 24 |
| Postsecondary Education | 21 |
| Secondary Education | 6 |
| High Schools | 4 |
| Elementary Education | 2 |
| Elementary Secondary Education | 1 |
| Grade 11 | 1 |
| Grade 4 | 1 |
| Grade 7 | 1 |
| Grade 8 | 1 |
| Intermediate Grades | 1 |
| More ▼ | |
Audience
| Researchers | 1 |
Location
| Australia | 2 |
| Brazil | 2 |
| Finland | 2 |
| Algeria | 1 |
| California (Stanford) | 1 |
| China | 1 |
| Czech Republic | 1 |
| Ireland | 1 |
| New Zealand | 1 |
| Singapore | 1 |
| Spain | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Walter Gander – Informatics in Education, 2024
When the new programming language Pascal was developed in the 1970's, Walter Gander did not like it because because many features which he appreciated in prior programming languages were missing in Pascal. For example the block structure was gone, there were no dynamical arrays, no functions or procedures were allowed as parameters of a procedure,…
Descriptors: Computer Software, Programming Languages, Algorithms, Automation
Jesper Dannath; Alina Deriyeva; Benjamin Paaßen – International Educational Data Mining Society, 2025
Research on the effectiveness of Intelligent Tutoring Systems (ITSs) suggests that automatic hint generation has the best effect on learning outcomes when hints are provided on the level of intermediate steps. However, ITSs for programming tasks face the challenge to decide on the granularity of steps for feedback, since it is not a priori clear…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Undergraduate Students
Muhammad Fawad Akbar Khan; Max Ramsdell; Erik Falor; Hamid Karimi – International Educational Data Mining Society, 2024
This paper undertakes a thorough evaluation of ChatGPT's code generation capabilities, contrasting them with those of human programmers from both educational and software engineering standpoints. The emphasis is placed on elucidating its importance in these intertwined domains. To facilitate a robust analysis, we curated a novel dataset comprising…
Descriptors: Artificial Intelligence, Automation, Computer Science Education, Programming
Tessa Charles; Carl Gwilliam – Journal for STEM Education Research, 2023
STEM fields, such as physics, increasingly rely on complex programs to analyse large datasets, thus teaching students the required programming skills is an important component of all STEM curricula. Since undergraduate students often have no prior coding experience, they are reliant on error messages as the primary diagnostic tool to identify and…
Descriptors: Automation, Feedback (Response), Error Correction, Physics
Anna Rechtácková; Radek Pelánek; Tomáš Effenberger – ACM Transactions on Computing Education, 2025
Code quality is a critical aspect of programming, as high-quality code is easier to maintain, and code maintenance constitutes the majority of software costs. Consequently, code quality should be emphasized in programming education. While previous research has identified numerous code quality defects commonly made by students, the current state…
Descriptors: Programming, Computer Science Education, Error Patterns, Automation
Ishaya Gambo; Faith-Jane Abegunde; Omobola Gambo; Roseline Oluwaseun Ogundokun; Akinbowale Natheniel Babatunde; Cheng-Chi Lee – Education and Information Technologies, 2025
The current educational system relies heavily on manual grading, posing challenges such as delayed feedback and grading inaccuracies. Automated grading tools (AGTs) offer solutions but come with limitations. To address this, "GRAD-AI" is introduced, an advanced AGT that combines automation with teacher involvement for precise grading,…
Descriptors: Automation, Grading, Artificial Intelligence, Computer Assisted Testing
Feng Hsu Wang – IEEE Transactions on Learning Technologies, 2024
Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in…
Descriptors: Learning Processes, Models, Man Machine Systems, Cooperative Learning
Yunsung Kim; Jadon Geathers; Chris Piech – International Educational Data Mining Society, 2024
"Stochastic programs," which are programs that produce probabilistic output, are a pivotal paradigm in various areas of CS education from introductory programming to machine learning and data science. Despite their importance, the problem of automatically grading such programs remains surprisingly unexplored. In this paper, we formalize…
Descriptors: Grading, Automation, Accuracy, Programming
Zifeng Liu; Wanli Xing; Chenglu Li; Fan Zhang; Hai Li; Victor Minces – Journal of Learning Analytics, 2025
Creativity is a vital skill in science, technology, engineering, and mathematics (STEM)-related education, fostering innovation and problem-solving. Traditionally, creativity assessments relied on human evaluations, such as the consensual assessment technique (CAT), which are resource-intensive, time-consuming, and often subjective. Recent…
Descriptors: Creativity, Elementary School Students, Artificial Intelligence, Man Machine Systems
Smitha S. Kumar; Michael A. Lones; Manuel Maarek; Hind Zantout – ACM Transactions on Computing Education, 2025
Programming demands a variety of cognitive skills, and mastering these competencies is essential for success in computer science education. The importance of formative feedback is well acknowledged in programming education, and thus, a diverse range of techniques has been proposed to generate and enhance formative feedback for programming…
Descriptors: Automation, Computer Science Education, Programming, Feedback (Response)
Rahaman, Md. Afzalur; Hoque, Abu Sayed Md. Latiful – International Journal of Learning Technology, 2022
For the last decades, programming courses are being taught in nearly every educational sector. Students are now more likely to use an e-learning platform compared to traditional system because of lower internet costs, remote access, and faster communication facilities. For a programming course studied in both manual and e-learning platforms,…
Descriptors: Evaluation Methods, Programming, Assignments, Automation
Umar Alkafaween; Ibrahim Albluwi; Paul Denny – Journal of Computer Assisted Learning, 2025
Background: Automatically graded programming assignments provide instant feedback to students and significantly reduce manual grading time for instructors. However, creating comprehensive suites of test cases for programming problems within automatic graders can be time-consuming and complex. The effort needed to define test suites may deter some…
Descriptors: Automation, Grading, Introductory Courses, Programming
Luo, Xiao – Journal of Educational Measurement, 2020
Automated test assembly (ATA) is a modern approach to test assembly that applies advanced optimization algorithms on computers to build test forms automatically. ATA greatly improves the efficiency and accuracy of the test assembly. This study investigated the effects of the modeling methods and solvers in the mixed-integer programming (MIP)…
Descriptors: Test Construction, Automation, Programming, Models
Victor-Alexandru Padurean; Tung Phung; Nachiket Kotalwar; Michael Liut; Juho Leinonen; Paul Denny; Adish Singla – International Educational Data Mining Society, 2025
The growing need for automated and personalized feedback in programming education has led to recent interest in leveraging generative AI for feedback generation. However, current approaches tend to rely on prompt engineering techniques in which predefined prompts guide the AI to generate feedback. This can result in rigid and constrained responses…
Descriptors: Automation, Student Writing Models, Feedback (Response), Programming
Barczak, Andre L. C.; Mathrani, Anuradha; Han, Binglan; Reyes, Napoleon H. – Educational Technology Research and Development, 2023
An important course in the computer science discipline is 'Data Structures and Algorithms' (DSA). "The coursework" lays emphasis on experiential learning for building students' programming and algorithmic reasoning abilities. Teachers set up a repertoire of formative programming exercises to engage students with different programmatic…
Descriptors: Computer Assisted Testing, Automation, Computer Science Education, Programming

Peer reviewed
Direct link
