Publication Date
In 2025 | 0 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 27 |
Since 2016 (last 10 years) | 30 |
Since 2006 (last 20 years) | 30 |
Descriptor
Source
Author
Chun Wang | 3 |
Tsutakawa, Robert K. | 3 |
George Perrett | 2 |
Jing Lu | 2 |
Jiwei Zhang | 2 |
Lin, Hsin Ying | 2 |
Mislevy, Robert J. | 2 |
Vincent Dorie | 2 |
White, Lee J. | 2 |
A. I. Makinde | 1 |
A. M. Sadek | 1 |
More ▼ |
Publication Type
Reports - Research | 42 |
Journal Articles | 29 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 7 |
Postsecondary Education | 7 |
Secondary Education | 4 |
High Schools | 1 |
Audience
Location
Massachusetts (Boston) | 1 |
Turkey | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 3 |
ACT Assessment | 1 |
What Works Clearinghouse Rating
Chen, Yinghan; Wang, Shiyu – Journal of Educational and Behavioral Statistics, 2023
Attribute hierarchy, the underlying prerequisite relationship among attributes, plays an important role in applying cognitive diagnosis models (CDM) for designing efficient cognitive diagnostic assessments. However, there are limited statistical tools to directly estimate attribute hierarchy from response data. In this study, we proposed a…
Descriptors: Cognitive Measurement, Models, Bayesian Statistics, Computation
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Yamaguchi, Kazuhiro; Zhang, Jihong – Journal of Educational Measurement, 2023
This study proposed Gibbs sampling algorithms for variable selection in a latent regression model under a unidimensional two-parameter logistic item response theory model. Three types of shrinkage priors were employed to obtain shrinkage estimates: double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors. These shrinkage priors were…
Descriptors: Algorithms, Simulation, Mathematics Achievement, Bayesian Statistics
Paganin, Sally; Paciorek, Christopher J.; Wehrhahn, Claudia; Rodríguez, Abel; Rabe-Hesketh, Sophia; de Valpine, Perry – Journal of Educational and Behavioral Statistics, 2023
Item response theory (IRT) models typically rely on a normality assumption for subject-specific latent traits, which is often unrealistic in practice. Semiparametric extensions based on Dirichlet process mixtures (DPMs) offer a more flexible representation of the unknown distribution of the latent trait. However, the use of such models in the IRT…
Descriptors: Bayesian Statistics, Item Response Theory, Guidance, Evaluation Methods
XinXiu Yang – International Journal of Information and Communication Technology Education, 2024
The objective of this work is to predict the employment rate of students based on the information in the SSM (student status management) in colleges and universities. Firstly, the relevant content of SSM is introduced. Secondly, the BP (Back Propagation) neural network, the LM (Levenberg Marquardt) algorithm, and the BR (Bayesian Regularization)…
Descriptors: Prediction, Employment Patterns, College Students, Algorithms
Taolin Zhang; Shuwen Jia – International Journal of Web-Based Learning and Teaching Technologies, 2024
At present, many schools implement teaching quality evaluation systems with student performance and practical activities as the core data of evaluation. Based on the introduction of the training objectives and discipline nature of the information management and information system specialty, this paper analyzes the construction principles of the…
Descriptors: Student Evaluation of Teacher Performance, Undergraduate Study, Computer Oriented Programs, Algorithms
O. S. Adewale; O. C. Agbonifo; E. O. Ibam; A. I. Makinde; O. K. Boyinbode; B. A. Ojokoh; O. Olabode; M. S. Omirin; S. O. Olatunji – Interactive Learning Environments, 2024
With the advent of technological advancement in learning, such as context-awareness, ubiquity and personalisation, various innovations in teaching and learning have led to improved learning. This research paper aims to develop a system that supports personalised learning through adaptive content, adaptive learning path and context awareness to…
Descriptors: Cognitive Style, Individualized Instruction, Learning Processes, Preferences
Dalia Khairy; Nouf Alharbi; Mohamed A. Amasha; Marwa F. Areed; Salem Alkhalaf; Rania A. Abougalala – Education and Information Technologies, 2024
Student outcomes are of great importance in higher education institutions. Accreditation bodies focus on them as an indicator to measure the performance and effectiveness of the institution. Forecasting students' academic performance is crucial for every educational establishment seeking to enhance performance and perseverance of its students and…
Descriptors: Prediction, Tests, Scores, Information Retrieval
Obeng, Asare Yaw – Cogent Education, 2023
The learning processes have been significantly impacted by technology. Numerous learners have adopted technology-based learning systems as the preferred form of learning. It is then necessary to identify the learning styles of learners to deliver appropriate resources, engage them, increase their motivation, and enhance their satisfaction and…
Descriptors: Predictor Variables, Cognitive Style, Electronic Learning, College Freshmen
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Pankaj Chejara; Luis P. Prieto; Yannis Dimitriadis; Maria Jesus Rodriguez-Triana; Adolfo Ruiz-Calleja; Reet Kasepalu; Shashi Kant Shankar – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) research has shown the feasibility of building automated models of collaboration quality using artificial intelligence (AI) techniques (e.g., supervised machine learning (ML)), thus enabling the development of monitoring and guiding tools for computer-supported collaborative learning (CSCL). However, the…
Descriptors: Learning Analytics, Attribution Theory, Acoustics, Artificial Intelligence
Imhof, Christof; Comsa, Ioan-Sorin; Hlosta, Martin; Parsaeifard, Behnam; Moser, Ivan; Bergamin, Per – IEEE Transactions on Learning Technologies, 2023
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include a higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems (LMS) and learning analytics (LA), indicators of such behavior can be detected, enabling predictions of…
Descriptors: Prediction, Time Management, Electronic Learning, Artificial Intelligence
Shu, Tian; Luo, Guanzhong; Luo, Zhaosheng; Yu, Xiaofeng; Guo, Xiaojun; Li, Yujun – Journal of Educational and Behavioral Statistics, 2023
Cognitive diagnosis models (CDMs) are the statistical framework for cognitive diagnostic assessment in education and psychology. They generally assume that subjects' latent attributes are dichotomous--mastery or nonmastery, which seems quite deterministic. As an alternative to dichotomous attribute mastery, attention is drawn to the use of a…
Descriptors: Cognitive Measurement, Models, Diagnostic Tests, Accuracy
Nayak, Padmalaya; Vaheed, Sk.; Gupta, Surbhi; Mohan, Neeraj – Education and Information Technologies, 2023
Students' academic performance prediction is one of the most important applications of Educational Data Mining (EDM) that helps to improve the quality of the education process. The attainment of student outcomes in an Outcome-based Education (OBE) system adds invaluable rewards to facilitate corrective measures to the learning processes.…
Descriptors: Predictor Variables, Academic Achievement, Data Collection, Information Retrieval