Publication Date
In 2025 | 1 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 14 |
Descriptor
Source
Author
Hong Zhang | 2 |
Lagnado, David A. | 2 |
McCormack, Teresa | 2 |
Saijun Zhao | 2 |
Zhiyong Zhang | 2 |
Adolfo Ruiz-Calleja | 1 |
Amota Ataneka | 1 |
Andrew Parnell | 1 |
Ann O'Shea | 1 |
Barberia, Itxaso | 1 |
Ben Kelcey | 1 |
More ▼ |
Publication Type
Reports - Research | 17 |
Journal Articles | 13 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
Teaching and Learning… | 1 |
What Works Clearinghouse Rating
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Grantee Submission, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Pankaj Chejara; Luis P. Prieto; Yannis Dimitriadis; Maria Jesus Rodriguez-Triana; Adolfo Ruiz-Calleja; Reet Kasepalu; Shashi Kant Shankar – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) research has shown the feasibility of building automated models of collaboration quality using artificial intelligence (AI) techniques (e.g., supervised machine learning (ML)), thus enabling the development of monitoring and guiding tools for computer-supported collaborative learning (CSCL). However, the…
Descriptors: Learning Analytics, Attribution Theory, Acoustics, Artificial Intelligence
Nathan McJames; Andrew Parnell; Ann O'Shea – Educational Review, 2025
Teacher shortages and attrition are problems of international concern. One of the most frequent reasons for teachers leaving the profession is a lack of job satisfaction. Accordingly, in this study we have adopted a causal inference machine learning approach to identify practical interventions for improving overall levels of job satisfaction. We…
Descriptors: Job Satisfaction, Teacher Surveys, Administrator Surveys, Faculty Mobility
Rodríguez-Ferreiro, Javier; Vadillo, Miguel A.; Barberia, Itxaso – Teaching of Psychology, 2023
Background: We have previously presented two educational interventions aimed to diminish causal illusions and promote critical thinking. In both cases, these interventions reduced causal illusions developed in response to active contingency learning tasks, in which participants were able to decide whether to introduce the potential cause in each…
Descriptors: Sampling, Inferences, Psychology, Undergraduate Students
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Puerta, Alejandro; Ramírez-Hassan, Andrés – Education Economics, 2022
We examine the effect of an integrity pilot campaign on undergraduates' behavior. As with many costly small-scale experiments and pilot programs, our statistical inference has to rely on small sample size. To tackle this issue, we perform a Bayesian retrospective power analysis. In our setup, a lecturer intentionally makes mistakes that favors…
Descriptors: Ethics, Integrity, Pilot Projects, Undergraduate Students
Kaplan, David – Large-scale Assessments in Education, 2016
This paper reviews recent research on causal inference with large-scale assessments in education from a Bayesian perspective. I begin by adopting the potential outcomes model of Rubin ("J Educ Psychol" 66:688-701, 1974) as a framework for causal inference that I argue is appropriate with large-scale educational assessments. I then…
Descriptors: Attribution Theory, Inferences, Bayesian Statistics, Educational Assessment
Peng Ding; Fan Li – Grantee Submission, 2018
Inferring causal effects of treatments is a central goal in many disciplines. The potential outcomes framework is a main statistical approach to causal inference, in which a causal effect is defined as a comparison of the potential outcomes of the same units under different treatment conditions. Because for each unit at most one of the potential…
Descriptors: Attribution Theory, Causal Models, Statistical Inference, Research Problems
Bloom, Howard S.; Raudenbush, Stephen W.; Weiss, Michael J.; Porter, Kristin – Journal of Research on Educational Effectiveness, 2017
The present article considers a fundamental question in evaluation research: "By how much do program effects vary across sites?" The article first presents a theoretical model of cross-site impact variation and a related estimation model with a random treatment coefficient and fixed site-specific intercepts. This approach eliminates…
Descriptors: Evaluation Research, Program Evaluation, Welfare Services, Employment
McCormack, Teresa; Frosch, Caren; Patrick, Fiona; Lagnado, David – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
Three experiments examined children's and adults' abilities to use statistical and temporal information to distinguish between common cause and causal chain structures. In Experiment 1, participants were provided with conditional probability information and/or temporal information and asked to infer the causal structure of a 3-variable mechanical…
Descriptors: Probability, Age Differences, Children, Intervention
Bramley, Neil R.; Lagnado, David A.; Speekenbrink, Maarten – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
Interacting with a system is key to uncovering its causal structure. A computational framework for interventional causal learning has been developed over the last decade, but how real causal learners might achieve or approximate the computations entailed by this framework is still poorly understood. Here we describe an interactive computer task in…
Descriptors: Intervention, Memory, Cognitive Processes, Models
Frosch, Caren A.; McCormack, Teresa; Lagnado, David A.; Burns, Patrick – Cognitive Science, 2012
The application of the formal framework of causal Bayesian Networks to children's causal learning provides the motivation to examine the link between judgments about the causal structure of a system, and the ability to make inferences about interventions on components of the system. Three experiments examined whether children are able to make…
Descriptors: Bayesian Statistics, Intervention, Inferences, Attribution Theory
Hill, Jennifer Lynn; Su, Yu-Sung – Grantee Submission, 2013
Causal inference in observational studies typically requires making comparisons between groups that are dissimilar. For instance, researchers investigating the role of a prolonged duration of breastfeeding on child outcomes may be forced to make comparisons between women with substantially different characteristics on average. In the extreme there…
Descriptors: Nutrition, Comparative Analysis, Child Development, Cognitive Ability
Forsyth, Donelson R.; Pope, William R. – 1980
If overattribution--the tendency for observers to think actors' attitudes match their behaviors even when behaviors are not freely performed--results from the fundamental attribution error, then observers must believe the coerced behavior is attributionally informative. This assumption was tested by (1) investigating the extent to which attitude…
Descriptors: Attitude Measures, Attribution Theory, Bayesian Statistics, Cognitive Processes
Previous Page | Next Page »
Pages: 1 | 2