Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 15 |
Since 2006 (last 20 years) | 17 |
Descriptor
Source
Author
Higgins, Steve | 2 |
Kasim, Adetayo | 2 |
Peng Ding | 2 |
Singh, Akansha | 2 |
Uwimpuhwe, Germaine | 2 |
Atsushi Miyaoka | 1 |
Botelho, A. F. | 1 |
Carpenter, James R. | 1 |
Clemens, Nathan H. | 1 |
Cody, Scott | 1 |
Coux, Mickael | 1 |
More ▼ |
Publication Type
Reports - Research | 17 |
Journal Articles | 11 |
Information Analyses | 2 |
Education Level
Elementary Education | 3 |
Grade 7 | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Early Childhood Education | 1 |
Elementary Secondary Education | 1 |
Grade 1 | 1 |
Grade 6 | 1 |
Grade 8 | 1 |
Higher Education | 1 |
More ▼ |
Audience
Location
United Kingdom (England) | 2 |
Laws, Policies, & Programs
Assessments and Surveys
Gates MacGinitie Reading Tests | 1 |
Gray Oral Reading Test | 1 |
What Works Clearinghouse Rating
Yao, Minghong; Wang, Yuning; Ren, Yan; Jia, Yulong; Zou, Kang; Li, Ling; Sun, Xin – Research Synthesis Methods, 2023
Rare events meta-analyses of randomized controlled trials (RCTs) are often underpowered because the outcomes are infrequent. Real-world evidence (RWE) from non-randomized studies may provide valuable complementary evidence about the effects of rare events, and there is growing interest in including such evidence in the decision-making process.…
Descriptors: Evidence, Meta Analysis, Randomized Controlled Trials, Decision Making
Robert B. Olsen; Larry L. Orr; Stephen H. Bell; Elizabeth Petraglia; Elena Badillo-Goicoechea; Atsushi Miyaoka; Elizabeth A. Stuart – Journal of Research on Educational Effectiveness, 2024
Multi-site randomized controlled trials (RCTs) provide unbiased estimates of the average impact in the study sample. However, their ability to accurately predict the impact for individual sites outside the study sample, to inform local policy decisions, is largely unknown. To extend prior research on this question, we analyzed six multi-site RCTs…
Descriptors: Accuracy, Predictor Variables, Randomized Controlled Trials, Regression (Statistics)
Winnie Wing-Yee Tse; Hok Chio Lai – Society for Research on Educational Effectiveness, 2021
Background: Power analysis and sample size planning are key components in designing cluster randomized trials (CRTs), a common study design to test treatment effect by randomizing clusters or groups of individuals. Sample size determination in two-level CRTs requires knowledge of more than one design parameter, such as the effect size and the…
Descriptors: Sample Size, Bayesian Statistics, Randomized Controlled Trials, Research Design
Uwimpuhwe, Germaine; Singh, Akansha; Higgins, Steve; Kasim, Adetayo – International Journal of Research & Method in Education, 2021
Educational researchers advocate the use of an effect size and its confidence interval to assess the effectiveness of interventions instead of relying on a p-value, which has been blamed for lack of reproducibility of research findings and the misuse of statistics. The aim of this study is to provide a framework, which can provide direct evidence…
Descriptors: Educational Research, Randomized Controlled Trials, Bayesian Statistics, Effect Size
Held, Leonhard; Matthews, Robert; Ott, Manuela; Pawel, Samuel – Research Synthesis Methods, 2022
It is now widely accepted that the standard inferential toolkit used by the scientific research community--null-hypothesis significance testing (NHST)--is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches for evidence assessment. This lack of consensus reflects…
Descriptors: Bayesian Statistics, Statistical Inference, Hypothesis Testing, Credibility
Peng Ding; Luke W. Miratrix – Grantee Submission, 2019
For binary experimental data, we discuss randomization-based inferential procedures that do not need to invoke any modeling assumptions. We also introduce methods for likelihood and Bayesian inference based solely on the physical randomization without any hypothetical super population assumptions about the potential outcomes. These estimators have…
Descriptors: Causal Models, Statistical Inference, Randomized Controlled Trials, Bayesian Statistics
Liang, Xinya; Kamata, Akihito; Li, Ji – Educational and Psychological Measurement, 2020
One important issue in Bayesian estimation is the determination of an effective informative prior. In hierarchical Bayes models, the uncertainty of hyperparameters in a prior can be further modeled via their own priors, namely, hyper priors. This study introduces a framework to construct hyper priors for both the mean and the variance…
Descriptors: Bayesian Statistics, Randomized Controlled Trials, Effect Size, Sampling
Finucane, Mariel McKenzie; Martinez, Ignacio; Cody, Scott – American Journal of Evaluation, 2018
In the coming years, public programs will capture even more and richer data than they do now, including data from web-based tools used by participants in employment services, from tablet-based educational curricula, and from electronic health records for Medicaid beneficiaries. Program evaluators seeking to take full advantage of these data…
Descriptors: Bayesian Statistics, Data Analysis, Program Evaluation, Randomized Controlled Trials
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Uwimpuhwe, Germaine; Singh, Akansha; Higgins, Steve; Coux, Mickael; Xiao, ZhiMin; Shkedy, Ziv; Kasim, Adetayo – Journal of Experimental Education, 2022
Educational stakeholders are keen to know the magnitude and importance of different interventions. However, the way evidence is communicated to support understanding of the effectiveness of an intervention is controversial. Typically studies in education have used the standardised mean difference as a measure of the impact of interventions. This…
Descriptors: Program Effectiveness, Intervention, Multivariate Analysis, Bayesian Statistics
Freeman, Suzanne C.; Carpenter, James R. – Research Synthesis Methods, 2017
Network meta-analysis (NMA) combines direct and indirect evidence from trials to calculate and rank treatment estimates. While modelling approaches for continuous and binary outcomes are relatively well developed, less work has been done with time-to-event outcomes. Such outcomes are usually analysed using Cox proportional hazard (PH) models.…
Descriptors: Bayesian Statistics, Network Analysis, Meta Analysis, Data
Kim, Mi-Ok; Wang, Xia; Liu, Chunyan; Dorris, Kathleen; Fouladi, Maryam; Song, Seongho – Research Synthesis Methods, 2017
Phase I trials aim to establish appropriate clinical and statistical parameters to guide future clinical trials. With individual trials typically underpowered, systematic reviews and meta-analysis are desired to assess the totality of evidence. A high percentage of zero or missing outcomes often complicate such efforts. We use a systematic review…
Descriptors: Meta Analysis, Synthesis, Literature Reviews, Pediatrics
Peng Ding; Fan Li – Grantee Submission, 2018
Inferring causal effects of treatments is a central goal in many disciplines. The potential outcomes framework is a main statistical approach to causal inference, in which a causal effect is defined as a comparison of the potential outcomes of the same units under different treatment conditions. Because for each unit at most one of the potential…
Descriptors: Attribution Theory, Causal Models, Statistical Inference, Research Problems
Miratrix, Luke; Feller, Avi; Pillai, Natesh; Pati, Debdeep – Society for Research on Educational Effectiveness, 2016
Modeling the distribution of site level effects is an important problem, but it is also an incredibly difficult one. Current methods rely on distributional assumptions in multilevel models for estimation. There it is hoped that the partial pooling of site level estimates with overall estimates, designed to take into account individual variation as…
Descriptors: Probability, Models, Statistical Distributions, Bayesian Statistics
Clemens, Nathan H.; Simmons, Deborah; Simmons, Leslie E.; Wang, Huan; Kwok, Oi-man – Journal of Psychoeducational Assessment, 2017
This study sought to better understand the prevalence of concurrent and specific difficulties in reading fluency and vocabulary among adolescents with low reading comprehension. Latent class analysis (LCA) was used to identify a sample of 180 students in sixth through eighth grades with reading comprehension difficulties. A subsequent LCA…
Descriptors: Reading Difficulties, Reading Fluency, Vocabulary, Reading Comprehension
Previous Page | Next Page ยป
Pages: 1 | 2