Publication Date
| In 2026 | 0 |
| Since 2025 | 10 |
| Since 2022 (last 5 years) | 53 |
| Since 2017 (last 10 years) | 118 |
| Since 2007 (last 20 years) | 187 |
Descriptor
Source
Author
| D'Mello, Sidney K. | 3 |
| Donnelly, Patrick J. | 2 |
| Heift, Trude | 2 |
| McNamara, Danielle S. | 2 |
| Ogata, Hiroaki | 2 |
| Rimrott, Anne | 2 |
| Sangjin Kim | 2 |
| Southwell, Rosy | 2 |
| Abdelhadi, Abdelhakim | 1 |
| Adler, Debora L. | 1 |
| Afrianti, Nurul | 1 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 4 |
Location
| Turkey | 7 |
| United Kingdom | 5 |
| Brazil | 3 |
| China | 3 |
| Hong Kong | 3 |
| Indonesia | 3 |
| Russia | 3 |
| South Korea | 3 |
| Spain | 3 |
| Thailand | 3 |
| United States | 3 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yiting Wang; Tong Li; Jiahui You; Xinran Zhang; Congkai Geng; Yu Liu – ACM Transactions on Computing Education, 2025
Understanding software modelers' difficulties and evaluating their performance is crucial to Model-Driven Engineering (MDE) education. The software modeling process contains fine-grained information about the modelers' analysis and thought processes. However, existing research primarily focuses on identifying obvious issues in the software…
Descriptors: Computer Software, Engineering Education, Models, Identification
Hanshu Zhang; Ran Zhou; Cheng-You Cheng; Sheng-Hsu Huang; Ming-Hui Cheng; Cheng-Ta Yang – Cognitive Research: Principles and Implications, 2025
Although it is commonly believed that automation aids human decision-making, conflicting evidence raises questions about whether individuals would gain greater advantages from automation in difficult tasks. Our study examines the combined influence of task difficulty and automation reliability on aided decision-making. We assessed decision…
Descriptors: Task Analysis, Difficulty Level, Decision Making, Automation
Peter Baldwin; Victoria Yaneva; Kai North; Le An Ha; Yiyun Zhou; Alex J. Mechaber; Brian E. Clauser – Journal of Educational Measurement, 2025
Recent developments in the use of large-language models have led to substantial improvements in the accuracy of content-based automated scoring of free-text responses. The reported accuracy levels suggest that automated systems could have widespread applicability in assessment. However, before they are used in operational testing, other aspects of…
Descriptors: Artificial Intelligence, Scoring, Computational Linguistics, Accuracy
Orkun Kocak; Sahin Idil – Journal of Education in Science, Environment and Health, 2025
This study is developing a Deep Learning model automating the coding of drawings students provide about climate change phenomena in our world, as a learning contribution through formative assessment. We started first with ResNet50 architecture, but ultimately, we settled on MobileNetV2 reduced architecture for the sake of being able to integrate…
Descriptors: Climate, Artificial Intelligence, Accuracy, Environmental Education
Jennifer Campbell; Katie Ansell; Tim Stelzer – Physical Review Physics Education Research, 2024
Recent advances in publicly available natural language processors (NLP) may enhance the efficiency of analyzing student short-answer responses in physics education research (PER). We train a state-of-the-art NLP, IBM's Watson, and test its agreement with human coders using two different studies that gathered text responses in which students…
Descriptors: Artificial Intelligence, Physics, Natural Language Processing, Computer Uses in Education
Andrea Horbach; Joey Pehlke; Ronja Laarmann-Quante; Yuning Ding – International Journal of Artificial Intelligence in Education, 2024
This paper investigates crosslingual content scoring, a scenario where scoring models trained on learner data in one language are applied to data in a different language. We analyze data in five different languages (Chinese, English, French, German and Spanish) collected for three prompts of the established English ASAP content scoring dataset. We…
Descriptors: Contrastive Linguistics, Scoring, Learning Analytics, Chinese
Rumeysa Demir; Metin Demir – Educational Process: International Journal, 2025
Background/purpose: This study aims to reveal in detail the extent to which the variables in The Primary and Secondary Education Institutions Scholarship Examination (PSEISE) predict the success of students on the scholarship exam with the help of artificial neural networks (ANN). In addition, in light of the findings obtained as a result of the…
Descriptors: Elementary Secondary Education, Foreign Countries, Artificial Intelligence, Computer Software
Hsu, Chia-Ling; Chen, Yi-Hsin; Wu, Yi-Jhen – Practical Assessment, Research & Evaluation, 2023
Correct specifications of hierarchical attribute structures in analyses using diagnostic classification models (DCMs) are pivotal because misspecifications can lead to biased parameter estimations and inaccurate classification profiles. This research is aimed to demonstrate DCM analyses with various hierarchical attribute structures via Bayesian…
Descriptors: Bayesian Statistics, Computation, International Assessment, Achievement Tests
Yoonjae Noh; YoonIl Yoon; Sangjin Kim – Measurement: Interdisciplinary Research and Perspectives, 2024
The default risk, one of the main risk factors for bonds, should be measured and reflected in the bond yield. Particularly, in the case of financial companies that treat bonds as a major product, failure to properly identify and filter customers' workout status adversely affects returns. This study proposes a two-stage classification algorithm for…
Descriptors: Prediction, Classification, Accuracy, Risk
Jehanzeb Rashid Cheema – Journal of Education in Muslim Societies, 2024
This study explores the relationship between the Spiral Dynamics and the 3H (head, heart, hands) models of human growth and development, using constructs such as empathy, moral reasoning, forgiveness, and community mindedness that have been shown to have implications for education. The specific research question is, "Can a combination of…
Descriptors: Correlation, Factor Analysis, Computer Software, Moral Values
Hyemin Yoon; HyunJin Kim; Sangjin Kim – Measurement: Interdisciplinary Research and Perspectives, 2024
We have maintained the customer grade system that is being implemented to customers with excellent performance through customer segmentation for years. Currently, financial institutions that operate the customer grade system provide similar services based on the score calculation criteria, but the score calculation criteria vary from the financial…
Descriptors: Classification, Artificial Intelligence, Prediction, Decision Making
Xieling Chen; Haoran Xie; Di Zou; Lingling Xu; Fu Lee Wang – Educational Technology & Society, 2025
In massive open online course (MOOC) environments, computer-based analysis of course reviews enables instructors and course designers to develop intervention strategies and improve instruction to support learners' learning. This study aimed to automatically and effectively identify learners' concerned topics within their written reviews. First, we…
Descriptors: Classification, MOOCs, Teaching Skills, Artificial Intelligence
Rebeckah K. Fussell; Megan Flynn; Anil Damle; Michael F. J. Fox; N. G. Holmes – Physical Review Physics Education Research, 2025
Recent advancements in large language models (LLMs) hold significant promise for improving physics education research that uses machine learning. In this study, we compare the application of various models for conducting a large-scale analysis of written text grounded in a physics education research classification problem: identifying skills in…
Descriptors: Physics, Computational Linguistics, Classification, Laboratory Experiments
Conrad Borchers; Tianze Shou – Grantee Submission, 2025
Large Language Models (LLMs) hold promise as dynamic instructional aids. Yet, it remains unclear whether LLMs can replicate the adaptivity of intelligent tutoring systems (ITS)--where student knowledge and pedagogical strategies are explicitly modeled. We propose a prompt variation framework to assess LLM-generated instructional moves' adaptivity…
Descriptors: Benchmarking, Computational Linguistics, Artificial Intelligence, Computer Software
Yamauchi, Taisei; Flanagan, Brendan; Nakamoto, Ryosuke; Dai, Yiling; Takami, Kyosuke; Ogata, Hiroaki – Smart Learning Environments, 2023
In recent years, smart learning environments have become central to modern education and support students and instructors through tools based on prediction and recommendation models. These methods often use learning material metadata, such as the knowledge contained in an exercise which is usually labeled by domain experts and is costly and…
Descriptors: Mathematics Instruction, Classification, Algorithms, Barriers

Peer reviewed
Direct link
