Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 19 |
Descriptor
Classification | 20 |
Statistical Inference | 20 |
Bayesian Statistics | 8 |
Computation | 7 |
Sampling | 6 |
Foreign Countries | 5 |
Models | 5 |
Statistical Analysis | 5 |
Achievement Tests | 4 |
Error of Measurement | 4 |
Mathematics Achievement | 4 |
More ▼ |
Source
Author
Kim, Jee-Seon | 2 |
Reading, Chris | 2 |
Suk, Youmi | 2 |
Andrew Jaciw | 1 |
Beechey, Timothy | 1 |
Bloom, Howard S. | 1 |
Chang, Hua-Hua | 1 |
Cimpian, Joseph R. | 1 |
Cui, Ying | 1 |
Cumberworth, Erin | 1 |
Dalal, Siddhartha R. | 1 |
More ▼ |
Publication Type
Reports - Research | 20 |
Journal Articles | 18 |
Education Level
Elementary Secondary Education | 4 |
Higher Education | 4 |
Postsecondary Education | 3 |
Secondary Education | 2 |
Elementary Education | 1 |
Grade 8 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Location
Australia | 2 |
Pennsylvania | 1 |
South Korea | 1 |
Texas | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Trends in International… | 3 |
National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Andrew Jaciw – Society for Research on Educational Effectiveness, 2024
Background: Rooted in problems of social justice, intersectionality addresses intragroup differences in impacts and outcomes and the compound discrimination at specific intersections of classification (Crenshaw,1991). It stresses that deficits/debts in outcomes often occur non-additively; for example, discriminatory hiring practices can be…
Descriptors: Intersectionality, Classification, Randomized Controlled Trials, Factor Analysis
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Najera, Hector – Measurement: Interdisciplinary Research and Perspectives, 2023
Measurement error affects the quality of population orderings of an index and, hence, increases the misclassification of the poor and the non-poor groups and affects statistical inferences from binary regression models. Hence, the conclusions about the extent, profile, and distribution of poverty are likely to be misleading. However, the size and…
Descriptors: Poverty, Error of Measurement, Classification, Statistical Inference
Mitnik, Pablo A.; Cumberworth, Erin – Sociological Methods & Research, 2021
Periodic changes in occupational classifications make it difficult to obtain consistent measures of social class over time, potentially jeopardizing research on class-based trends. The severity of this problem depends, in part, on the measurement strategies used to address those changes. The authors propose that when a sample has been coded partly…
Descriptors: Social Class, Occupations, Reliability, Measurement Techniques
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Wang, Xiaoqing; Wu, Haotian; Feng, Xiangnan; Song, Xinyuan – Sociological Methods & Research, 2021
Given the questionnaire design and the nature of the problem, partially ordered data that are neither completely ordered nor completely unordered are frequently encountered in social, behavioral, and medical studies. However, early developments in partially ordered data analysis are very limited and restricted only to cross-sectional data. In this…
Descriptors: Bayesian Statistics, Health Behavior, Smoking, Case Studies
Ellison, George T. H. – Journal of Statistics and Data Science Education, 2021
Temporality-driven covariate classification had limited impact on: the specification of directed acyclic graphs (DAGs) by 85 novice analysts (medical undergraduates); or the risk of bias in DAG-informed multivariable models designed to generate causal inference from observational data. Only 71 students (83.5%) managed to complete the…
Descriptors: Statistics Education, Medical Education, Undergraduate Students, Graphs
Yamaguchi, Kazuhiro – Journal of Educational and Behavioral Statistics, 2023
Understanding whether or not different types of students master various attributes can aid future learning remediation. In this study, two-level diagnostic classification models (DCMs) were developed to represent the probabilistic relationship between external latent classes and attribute mastery patterns. Furthermore, variational Bayesian (VB)…
Descriptors: Bayesian Statistics, Classification, Statistical Inference, Sampling
Suk, Youmi; Kim, Jee-Seon; Kang, Hyunseung – Journal of Educational and Behavioral Statistics, 2021
There has been increasing interest in exploring heterogeneous treatment effects using machine learning (ML) methods such as causal forests, Bayesian additive regression trees, and targeted maximum likelihood estimation. However, there is little work on applying these methods to estimate treatment effects in latent classes defined by…
Descriptors: Artificial Intelligence, Statistical Analysis, Statistical Inference, Classification
Guerra-Peña, Kiero; Steinley, Douglas – Educational and Psychological Measurement, 2016
Growth mixture modeling is generally used for two purposes: (1) to identify mixtures of normal subgroups and (2) to approximate oddly shaped distributions by a mixture of normal components. Often in applied research this methodology is applied to both of these situations indistinctly: using the same fit statistics and likelihood ratio tests. This…
Descriptors: Growth Models, Bayesian Statistics, Sampling, Statistical Inference
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Cimpian, Joseph R. – Journal of Research on Educational Effectiveness, 2017
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
Descriptors: Regression (Statistics), Intervention, Quasiexperimental Design, Simulation
Cui, Ying; Gierl, Mark J.; Chang, Hua-Hua – Journal of Educational Measurement, 2012
This article introduces procedures for the computation and asymptotic statistical inference for classification consistency and accuracy indices specifically designed for cognitive diagnostic assessments. The new classification indices can be used as important indicators of the reliability and validity of classification results produced by…
Descriptors: Classification, Accuracy, Cognitive Tests, Diagnostic Tests
Han, Bing; Dalal, Siddhartha R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2012
There is widespread interest in using various statistical inference tools as a part of the evaluations for individual teachers and schools. Evaluation systems typically involve classifying hundreds or even thousands of teachers or schools according to their estimated performance. Many current evaluations are largely based on individual estimates…
Descriptors: Statistical Inference, Error of Measurement, Classification, Statistical Analysis
Paek, Insu; Wilson, Mark – Educational and Psychological Measurement, 2011
This study elaborates the Rasch differential item functioning (DIF) model formulation under the marginal maximum likelihood estimation context. Also, the Rasch DIF model performance was examined and compared with the Mantel-Haenszel (MH) procedure in small sample and short test length conditions through simulations. The theoretically known…
Descriptors: Test Bias, Test Length, Statistical Inference, Geometric Concepts
Previous Page | Next Page »
Pages: 1 | 2