Publication Date
In 2025 | 6 |
Since 2024 | 22 |
Since 2021 (last 5 years) | 64 |
Since 2016 (last 10 years) | 99 |
Since 2006 (last 20 years) | 124 |
Descriptor
Computer Assisted Testing | 128 |
Automation | 127 |
Scoring | 60 |
Foreign Countries | 35 |
Feedback (Response) | 31 |
Writing Evaluation | 31 |
Essays | 25 |
Scores | 25 |
Artificial Intelligence | 22 |
Natural Language Processing | 22 |
Student Evaluation | 18 |
More ▼ |
Source
Author
Danielle S. McNamara | 3 |
Mihai Dascalu | 3 |
Stefan Ruseti | 3 |
Wilson, Joshua | 3 |
Attali, Yigal | 2 |
Belur, Vinetha | 2 |
Ben-Simon, Anat | 2 |
Casabianca, Jodi M. | 2 |
Chen, Dandan | 2 |
Evanini, Keelan | 2 |
Gierl, Mark J. | 2 |
More ▼ |
Publication Type
Reports - Research | 128 |
Journal Articles | 109 |
Speeches/Meeting Papers | 11 |
Tests/Questionnaires | 4 |
Information Analyses | 2 |
Education Level
Audience
Location
China | 5 |
Germany | 3 |
Indonesia | 3 |
Japan | 3 |
Spain | 3 |
Australia | 2 |
India | 2 |
Singapore | 2 |
South Korea | 2 |
Sweden | 2 |
Taiwan | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 1 |
Meets WWC Standards with or without Reservations | 1 |
Po-Chun Huang; Ying-Hong Chan; Ching-Yu Yang; Hung-Yuan Chen; Yao-Chung Fan – IEEE Transactions on Learning Technologies, 2024
Question generation (QG) task plays a crucial role in adaptive learning. While significant QG performance advancements are reported, the existing QG studies are still far from practical usage. One point that needs strengthening is to consider the generation of question group, which remains untouched. For forming a question group, intrafactors…
Descriptors: Automation, Test Items, Computer Assisted Testing, Test Construction
Ishaya Gambo; Faith-Jane Abegunde; Omobola Gambo; Roseline Oluwaseun Ogundokun; Akinbowale Natheniel Babatunde; Cheng-Chi Lee – Education and Information Technologies, 2025
The current educational system relies heavily on manual grading, posing challenges such as delayed feedback and grading inaccuracies. Automated grading tools (AGTs) offer solutions but come with limitations. To address this, "GRAD-AI" is introduced, an advanced AGT that combines automation with teacher involvement for precise grading,…
Descriptors: Automation, Grading, Artificial Intelligence, Computer Assisted Testing

Andreea Dutulescu; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Assessing the difficulty of reading comprehension questions is crucial to educational methodologies and language understanding technologies. Traditional methods of assessing question difficulty rely frequently on human judgments or shallow metrics, often failing to accurately capture the intricate cognitive demands of answering a question. This…
Descriptors: Difficulty Level, Reading Tests, Test Items, Reading Comprehension
Guher Gorgun; Okan Bulut – Education and Information Technologies, 2024
In light of the widespread adoption of technology-enhanced learning and assessment platforms, there is a growing demand for innovative, high-quality, and diverse assessment questions. Automatic Question Generation (AQG) has emerged as a valuable solution, enabling educators and assessment developers to efficiently produce a large volume of test…
Descriptors: Computer Assisted Testing, Test Construction, Test Items, Automation
Ulrike Padó; Yunus Eryilmaz; Larissa Kirschner – International Journal of Artificial Intelligence in Education, 2024
Short-Answer Grading (SAG) is a time-consuming task for teachers that automated SAG models have long promised to make easier. However, there are three challenges for their broad-scale adoption: A technical challenge regarding the need for high-quality models, which is exacerbated for languages with fewer resources than English; a usability…
Descriptors: Grading, Automation, Test Format, Computer Assisted Testing
Uto, Masaki; Aomi, Itsuki; Tsutsumi, Emiko; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2023
In automated essay scoring (AES), essays are automatically graded without human raters. Many AES models based on various manually designed features or various architectures of deep neural networks (DNNs) have been proposed over the past few decades. Each AES model has unique advantages and characteristics. Therefore, rather than using a single-AES…
Descriptors: Prediction, Scores, Computer Assisted Testing, Scoring
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Buczak, Philip; Huang, He; Forthmann, Boris; Doebler, Philipp – Journal of Creative Behavior, 2023
Traditionally, researchers employ human raters for scoring responses to creative thinking tasks. Apart from the associated costs this approach entails two potential risks. First, human raters can be subjective in their scoring behavior (inter-rater-variance). Second, individual raters are prone to inconsistent scoring patterns…
Descriptors: Computer Assisted Testing, Scoring, Automation, Creative Thinking
Shin, Jinnie; Gierl, Mark J. – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) technologies provide innovative solutions to score the written essays with a much shorter time span and at a fraction of the current cost. Traditionally, AES emphasized the importance of capturing the "coherence" of writing because abundant evidence indicated the connection between coherence and the overall…
Descriptors: Computer Assisted Testing, Scoring, Essays, Automation
Jessie S. Barrot – Education and Information Technologies, 2024
This bibliometric analysis attempts to map out the scientific literature on automated writing evaluation (AWE) systems for teaching, learning, and assessment. A total of 170 documents published between 2002 and 2021 in Social Sciences Citation Index journals were reviewed from four dimensions, namely size (productivity and citations), time…
Descriptors: Educational Trends, Automation, Computer Assisted Testing, Writing Tests
Huawei, Shi; Aryadoust, Vahid – Education and Information Technologies, 2023
Automated writing evaluation (AWE) systems are developed based on interdisciplinary research and technological advances such as natural language processing, computer sciences, and latent semantic analysis. Despite a steady increase in research publications in this area, the results of AWE investigations are often mixed, and their validity may be…
Descriptors: Writing Evaluation, Writing Tests, Computer Assisted Testing, Automation
Pearson, Christopher; Penna, Nigel – Assessment & Evaluation in Higher Education, 2023
E-assessments are becoming increasingly common and progressively more complex. Consequently, how these longer, more complex questions are designed and marked is imperative. This article uses the NUMBAS e-assessment tool to investigate the best practice for creating longer questions and their mark schemes on surveying modules taken by engineering…
Descriptors: Automation, Scoring, Engineering Education, Foreign Countries
Barthakur, Abhinava; Kovanovic, Vitomir; Joksimovic, Srecko; Zhang, Zhonghua; Richey, Michael; Pardo, Abelardo – British Journal of Educational Technology, 2022
Technological affordances have shown promising potential in advancing the delivery of corporate learning programmes designed for professional leadership development. However, there is a considerable challenge in evaluating learners' skill acquisition, with most of the past research relying on pre- and post-tests or other forms of self-reports to…
Descriptors: Leadership, Workplace Learning, Computer Assisted Testing, Evaluation Methods
Barczak, Andre L. C.; Mathrani, Anuradha; Han, Binglan; Reyes, Napoleon H. – Educational Technology Research and Development, 2023
An important course in the computer science discipline is 'Data Structures and Algorithms' (DSA). "The coursework" lays emphasis on experiential learning for building students' programming and algorithmic reasoning abilities. Teachers set up a repertoire of formative programming exercises to engage students with different programmatic…
Descriptors: Computer Assisted Testing, Automation, Computer Science Education, Programming