NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 53 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jorge N. Tendeiro; Rink Hoekstra; Tsz Keung Wong; Henk A. L. Kiers – Teaching Statistics: An International Journal for Teachers, 2025
Most researchers receive formal training in frequentist statistics during their undergraduate studies. In particular, hypothesis testing is usually rooted on the null hypothesis significance testing paradigm and its p-value. Null hypothesis Bayesian testing and its so-called Bayes factor are now becoming increasingly popular. Although the Bayes…
Descriptors: Statistics Education, Teaching Methods, Programming Languages, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2024
In psychology, researchers are often interested in testing hypotheses about mediation, such as testing the presence of a mediation effect of a treatment (e.g., intervention assignment) on an outcome via a mediator. An increasingly popular approach to testing hypotheses is the Bayesian testing approach with Bayes factors (BFs). Despite the growing…
Descriptors: Sample Size, Bayesian Statistics, Programming Languages, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Paganin, Sally; Paciorek, Christopher J.; Wehrhahn, Claudia; Rodríguez, Abel; Rabe-Hesketh, Sophia; de Valpine, Perry – Journal of Educational and Behavioral Statistics, 2023
Item response theory (IRT) models typically rely on a normality assumption for subject-specific latent traits, which is often unrealistic in practice. Semiparametric extensions based on Dirichlet process mixtures (DPMs) offer a more flexible representation of the unknown distribution of the latent trait. However, the use of such models in the IRT…
Descriptors: Bayesian Statistics, Item Response Theory, Guidance, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tan, Teck Kiang – Practical Assessment, Research & Evaluation, 2022
Power analysis based on the analytical t-test is an important aspect of a research study to determine the sample size required to detect the effect for the comparison of two means. The current paper presents a reader-friendly procedure for carrying out the t-test power analysis using the various R add-on packages. While there is a growing of R…
Descriptors: Programming Languages, Sample Size, Bayesian Statistics, Intervention
Ziqian Xu – Grantee Submission, 2022
With the prevalence of missing data in social science research, it is necessary to use methods for handling missing data. One framework in which data with missing values can still be used for parameter estimation is the Bayesian framework. In this tutorial, different missing data mechanisms including Missing Completely at Random, Missing at…
Descriptors: Research Problems, Bayesian Statistics, Structural Equation Models, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hsu, Chia-Ling; Chen, Yi-Hsin; Wu, Yi-Jhen – Practical Assessment, Research & Evaluation, 2023
Correct specifications of hierarchical attribute structures in analyses using diagnostic classification models (DCMs) are pivotal because misspecifications can lead to biased parameter estimations and inaccurate classification profiles. This research is aimed to demonstrate DCM analyses with various hierarchical attribute structures via Bayesian…
Descriptors: Bayesian Statistics, Computation, International Assessment, Achievement Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Nesra Yannier; Scott E. Hudson; Henry Chang; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2024
Adaptivity in advanced learning technologies offer the possibility to adapt to different student backgrounds, which is difficult to do in a traditional classroom setting. However, there are mixed results on the effectiveness of adaptivity based on different implementations and contexts. In this paper, we introduce AI adaptivity in the context of a…
Descriptors: Artificial Intelligence, Computer Software, Feedback (Response), Outcomes of Education
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Owen Henkel; Hannah Horne-Robinson; Maria Dyshel; Greg Thompson; Ralph Abboud; Nabil Al Nahin Ch; Baptiste Moreau-Pernet; Kirk Vanacore – Journal of Learning Analytics, 2025
This paper introduces AMMORE, a new dataset of 53,000 math open-response question-answer pairs from Rori, a mathematics learning platform used by middle and high school students in several African countries. Using this dataset, we conducted two experiments to evaluate the use of large language models (LLM) for grading particularly challenging…
Descriptors: Learning Analytics, Learning Management Systems, Mathematics Instruction, Middle School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Nathan McJames; Andrew Parnell; Ann O'Shea – Educational Review, 2025
Teacher shortages and attrition are problems of international concern. One of the most frequent reasons for teachers leaving the profession is a lack of job satisfaction. Accordingly, in this study we have adopted a causal inference machine learning approach to identify practical interventions for improving overall levels of job satisfaction. We…
Descriptors: Job Satisfaction, Teacher Surveys, Administrator Surveys, Faculty Mobility
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Journal of Educational Measurement, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Grantee Submission, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Mai, Yujiao; Zhang, Zhiyong – Grantee Submission, 2018
Multilevel modeling is a statistical approach to analyze hierarchical data, which consist of individual observations nested within clusters. Bayesian methods is a well-known, sometimes better, alternative of Maximum likelihood methods for fitting multilevel models. Lack of user-friendly and computationally efficient software packages or programs…
Descriptors: Hierarchical Linear Modeling, Computer Software, Bayesian Statistics, Efficiency
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Williamson, Kimberly; Kizilcec, René F. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms such as Bayesian Knowledge Tracing (BKT) can provide students and teachers with helpful information about their progress towards learning objectives. Despite the popularity of BKT in the research community, the algorithm is not widely adopted in educational practice. This may be due to skepticism from users and…
Descriptors: Bayesian Statistics, Learning Processes, Computer Software, Learning Analytics
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4