NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Research13
Journal Articles11
Speeches/Meeting Papers2
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xuelin Liu; Hua Zhang; Yue Cheng – International Journal of Web-Based Learning and Teaching Technologies, 2024
In this article, a dialogue text feature extraction model based on big data and machine learning is constructed, which transforms the high-dimensional space of text features into the low-dimensional space that is easy to process, so that the best feature words can be selected to represent the document set. Tests show that in most cases, the…
Descriptors: Artificial Intelligence, Data, Text Structure, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Rebeckah K. Fussell; Emily M. Stump; N. G. Holmes – Physical Review Physics Education Research, 2024
Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing…
Descriptors: Physics, Educational Researchers, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shimmei, Machi; Matsuda, Noboru – International Educational Data Mining Society, 2023
We propose an innovative, effective, and data-agnostic method to train a deep-neural network model with an extremely small training dataset, called VELR (Voting-based Ensemble Learning with Rejection). In educational research and practice, providing valid labels for a sufficient amount of data to be used for supervised learning can be very costly…
Descriptors: Artificial Intelligence, Training, Natural Language Processing, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Leanne Bowler; Irene Lopatovska; Mark S. Rosin – Information and Learning Sciences, 2024
Purpose: The purpose of this study is to explore teen-adult dialogic interactions during the co-design of data literacy activities in order to determine the nature of teen thinking, their emotions, level of engagement, and the power of relationships between teens and adults in the context of data literacy. This study conceives of co-design as a…
Descriptors: Librarians, Adolescents, Language Patterns, Public Libraries
Peer reviewed Peer reviewed
Direct linkDirect link
Kochmar, Ekaterina; Vu, Dung Do; Belfer, Robert; Gupta, Varun; Serban, Iulian Vlad; Pineau, Joelle – International Journal of Artificial Intelligence in Education, 2022
Intelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we…
Descriptors: Intelligent Tutoring Systems, Automation, Feedback (Response), Dialogs (Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Pammer-Schindler, Viktoria; Rosé, Carolyn – International Journal of Artificial Intelligence in Education, 2022
Professional and lifelong learning are a necessity for workers. This is true both for re-skilling from disappearing jobs, as well as for staying current within a professional domain. AI-enabled scaffolding and just-in-time and situated learning in the workplace offer a new frontier for future impact of AIED. The hallmark of this community's work…
Descriptors: Data, Ethics, Informal Education, Professional Development
Peer reviewed Peer reviewed
Direct linkDirect link
Christopher Dann; Petrea Redmond; Melissa Fanshawe; Alice Brown; Seyum Getenet; Thanveer Shaik; Xiaohui Tao; Linda Galligan; Yan Li – Australasian Journal of Educational Technology, 2024
Making sense of student feedback and engagement is important for informing pedagogical decision-making and broader strategies related to student retention and success in higher education courses. Although learning analytics and other strategies are employed within courses to understand student engagement, the interpretation of data for larger data…
Descriptors: Artificial Intelligence, Learner Engagement, Feedback (Response), Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Vittorini, Pierpaolo; Menini, Stefano; Tonelli, Sara – International Journal of Artificial Intelligence in Education, 2021
Massive open online courses (MOOCs) provide hundreds of students with teaching materials, assessment tools, and collaborative instruments. The assessment activity, in particular, is demanding in terms of both time and effort; thus, the use of artificial intelligence can be useful to address and reduce the time and effort required. This paper…
Descriptors: Artificial Intelligence, Formative Evaluation, Summative Evaluation, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Rybinski, Krzysztof; Kopciuszewska, Elzbieta – Assessment & Evaluation in Higher Education, 2021
This article presents the first-ever big data study of the student evaluation of teaching (SET) using artificial intelligence (AI). We train natural language processing (NLP) models on 1.6 million student evaluations from the US and the UK. We address two research questions: (1) are these models able to predict student ratings from the student…
Descriptors: Artificial Intelligence, Technology Uses in Education, Student Evaluation of Teacher Performance, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
West, Jason – Curriculum Journal, 2017
Interdisciplinarity requires the collaboration of two or more disciplines to combine their expertise to jointly develop and deliver learning and teaching outcomes appropriate for a subject area. Curricula and assessment mapping are critical components to foster and enhance interdisciplinary learning environments. Emerging careers in data science…
Descriptors: Curriculum Development, Validity, Data Analysis, Interdisciplinary Approach
Zafra, Amelia; Ventura, Sebastian – International Working Group on Educational Data Mining, 2009
The ability to predict a student's performance could be useful in a great number of different ways associated with university-level learning. In this paper, a grammar guided genetic programming algorithm, G3P-MI, has been applied to predict if the student will fail or pass a certain course and identifies activities to promote learning in a…
Descriptors: Foreign Countries, Programming, Academic Achievement, Grades (Scholastic)
Peer reviewed Peer reviewed
Direct linkDirect link
Braun, Sabine – ReCALL, 2007
This paper reports on an empirical case study conducted to investigate the overall conditions and challenges of integrating corpus materials and corpus-based learning activities into English-language classes at a secondary school in Germany. Starting from the observation that in spite of the large amount of research into corpus-based language…
Descriptors: Foreign Countries, English (Second Language), Case Studies, Second Language Learning