Publication Date
In 2025 | 1 |
Since 2024 | 7 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 37 |
Since 2006 (last 20 years) | 70 |
Descriptor
Source
Author
Enders, Craig K. | 3 |
Adam Sales | 2 |
Anthony F. Botelho | 2 |
Avery H. Closser | 2 |
Adelson, Jill L. | 1 |
Adrienne D. Woods | 1 |
Alberto, Paul A. | 1 |
Aleven, Vincent | 1 |
Andrade, Fernando | 1 |
Armitage, Emma | 1 |
Bauer, Daniel J. | 1 |
More ▼ |
Publication Type
Reports - Research | 70 |
Journal Articles | 57 |
Information Analyses | 1 |
Numerical/Quantitative Data | 1 |
Speeches/Meeting Papers | 1 |
Tests/Questionnaires | 1 |
Education Level
Audience
Researchers | 1 |
Location
United States | 3 |
Australia | 2 |
Canada | 2 |
Germany | 2 |
Hawaii | 2 |
Malaysia | 2 |
Texas | 2 |
United Kingdom (England) | 2 |
Belgium | 1 |
Brazil | 1 |
California | 1 |
More ▼ |
Laws, Policies, & Programs
Bakke v Regents of University… | 1 |
Gratz et al v Bollinger et al | 1 |
Grutter et al v Bollinger et… | 1 |
Hopwood v Texas | 1 |
Race to the Top | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Dongho Shin; Yongyun Shin; Nao Hagiwara – Grantee Submission, 2025
We consider Bayesian estimation of a hierarchical linear model (HLM) from partially observed data, assumed to be missing at random, and small sample sizes. A vector of continuous covariates C includes cluster-level partially observed covariates with interaction effects. Due to small sample sizes from 37 patient-physician encounters repeatedly…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Multivariate Analysis, Data Analysis
Francis L. Huang – Large-scale Assessments in Education, 2024
The use of large-scale assessments (LSAs) in education has grown in the past decade though analysis of LSAs using multilevel models (MLMs) using R has been limited. A reason for its limited use may be due to the complexity of incorporating both plausible values and weighted analyses in the multilevel analyses of LSA data. We provide additional…
Descriptors: Hierarchical Linear Modeling, Evaluation Methods, Educational Assessment, Data Analysis
Rashelle J. Musci; Joseph Kush; Elise T. Pas; Catherine P. Bradshaw – Grantee Submission, 2024
Given the increased focus of educational research on what works for whom and under what circumstances over the last decade, educational researchers are increasingly turning toward mixture models to identify heterogeneous subgroups among students. Such data are inherently nested, as students are nested within classrooms and schools. Yet there has…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Nonparametric Statistics, Educational Research
Brian T. Keller; Craig K. Enders – Grantee Submission, 2023
A growing body of literature has focused on missing data methods that factorize the joint distribution into a part representing the analysis model of interest and a part representing the distributions of the incomplete predictors. Relatively little is known about the utility of this method for multilevel models with interactive effects. This study…
Descriptors: Data Analysis, Hierarchical Linear Modeling, Monte Carlo Methods, Bias
Glaman, Ryan; Chen, Qi; Henson, Robin K. – Journal of Experimental Education, 2022
This study compared three approaches for handling a fourth level of nesting when analyzing cluster-randomized trial (CRT) data. Although CRT data analyses may include repeated measures, individual, and cluster levels, there may be an additional fourth level that is typically ignored. This study examined the impact of ignoring this fourth level,…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Data Analysis, Simulation
Cross-Classified Item Response Theory Modeling with an Application to Student Evaluation of Teaching
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory
Avery H. Closser; Adam Sales; Anthony F. Botelho – Grantee Submission, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data on study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Avery H. Closser; Adam Sales; Anthony F. Botelho – Educational Technology Research and Development, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data to study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Qi, Xinyue; Zhou, Shouhao; Wang, Yucai; Peterson, Christine – Research Synthesis Methods, 2022
Meta-analysis allows researchers to combine evidence from multiple studies, making it a powerful tool for synthesizing information on the safety profiles of new medical interventions. There is a critical need to identify subgroups at high risk of experiencing treatment-related toxicities. However, this remains quite challenging from a statistical…
Descriptors: Bayesian Statistics, Identification, Meta Analysis, Data Analysis
Ben Van Dusen; Heidi Cian; Jayson Nissen; Lucy Arellano; Adrienne D. Woods – Sociology of Education, 2024
This investigation examines the efficacy of multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) over fixed-effects models when performing intersectional studies. The research questions are as follows: (1) What are typical strata representation rates and outcomes on physics research-based assessments? (2) To what…
Descriptors: Educational Research, Intersectionality, Critical Race Theory, STEM Education
Lougheed, Jessica P.; Benson, Lizbeth; Cole, Pamela M.; Ram, Nilam – Developmental Psychology, 2019
The timing of events (e.g., how long it takes a child to exhibit a particular behavior) is often of interest in developmental science. Multilevel survival analysis (MSA) is useful for examining behavioral timing in observational studies (i.e., video recordings) of children's behavior. We illustrate how MSA can be used to answer 2 types of research…
Descriptors: Time, Child Behavior, Psychological Patterns, Data Analysis
Joo, Seang-Hwane; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2019
Multilevel modeling has been utilized for combining single-case experimental design (SCED) data assuming simple level-1 error structures. The purpose of this study is to compare various multilevel analysis approaches for handling potential complexity in the level-1 error structure within SCED data, including approaches assuming simple and complex…
Descriptors: Hierarchical Linear Modeling, Synthesis, Data Analysis, Accuracy
Enders, Craig K.; Hayes, Timothy; Du, Han – Grantee Submission, 2018
Literature addressing missing data handling for random coefficient models is particularly scant, and the few studies to date have focused on the fully conditional specification framework and "reverse random coefficient" imputation. Although it has not received much attention in the literature, a joint modeling strategy that uses random…
Descriptors: Data Analysis, Statistical Bias, Sample Size, Correlation
Manuel S. González Canché – AERA Open, 2023
Research has shown that mathematical proficiency gaps are related to students' and schools' indicators of poverty, with fewer studies on neighborhood effects on achievement gaps. Although this literature has accounted for students' nesting within schools, so far, methodological constraints have not allowed researchers to formally account for…
Descriptors: Mathematics Achievement, Achievement Gap, Educational Research, Regression (Statistics)
Enders, Craig K.; Keller, Brian T.; Levy, Roy – Grantee Submission, 2018
Specialized imputation routines for multilevel data are widely available in software packages, but these methods are generally not equipped to handle a wide range of complexities that are typical of behavioral science data. In particular, existing imputation schemes differ in their ability to handle random slopes, categorical variables,…
Descriptors: Hierarchical Linear Modeling, Behavioral Science Research, Computer Software, Bayesian Statistics