NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 1,324 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
David Williamson Shaffer; Yeyu Wang; Andrew Ruis – Journal of Learning Analytics, 2025
Learning is a multimodal process, and learning analytics (LA) researchers can readily access rich learning process data from multiple modalities, including audio-video recordings or transcripts of in-person interactions; logfiles and messages from online activities; and biometric measurements such as eye-tracking, movement, and galvanic skin…
Descriptors: Learning Processes, Learning Analytics, Models, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Martyna Daria Swiatczak; Michael Baumgartner – Sociological Methods & Research, 2025
In this paper, we investigate the conditions under which data imbalances, a common data characteristic that occurs when factor values are unevenly distributed, are problematic for the performance of Coincidence Analysis (CNA). We further examine how such imbalances relate to fragmentation and noise in data. We show that even extreme data…
Descriptors: Causal Models, Comparative Analysis, Data Analysis, Statistical Distributions
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Frank Lee; Alex Algarra – Information Systems Education Journal, 2025
This case study examines employee attrition, its detrimental effects on businesses, and the potential of data analytics to address this challenge. By employing Latent Dirichlet Allocation (LDA), a sophisticated NLP technique, we delve into the underlying reasons for employee departures. Additionally, we explore using RapidMiner to develop…
Descriptors: Labor Turnover, Data Analysis, Natural Language Processing, Employees
Peer reviewed Peer reviewed
Direct linkDirect link
Gülsah Kemer – Counselor Education and Supervision, 2025
Supervision models are fundamental to our supervision practices and criticized for lacking empirical support. As a data-driven approach based on research with expert supervisors, Cohesive Model of Supervision unifies existing models' central premises in a meaningful manner and emphasizes the understated areas of supervision practice.
Descriptors: Counselor Training, Supervision, Models, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chen Qiu; Michael R. Peabody; Kelly D. Bradley – Measurement: Interdisciplinary Research and Perspectives, 2024
It is meaningful to create a comprehensive score to extract information from mass continuous data when they measure the same latent concept. Therefore, this study adopts the logic of psychometrics to conduct scales on continuous data under the Rasch models. This study also explores the effect of different data discretization methods on scale…
Descriptors: Models, Measurement Techniques, Benchmarking, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Engelhard, George – Educational and Psychological Measurement, 2023
The purpose of this study is to introduce a functional approach for modeling unfolding response data. Functional data analysis (FDA) has been used for examining cumulative item response data, but a functional approach has not been systematically used with unfolding response processes. A brief overview of FDA is presented and illustrated within the…
Descriptors: Data Analysis, Models, Responses, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Wenchao Ma; Miguel A. Sorrel; Xiaoming Zhai; Yuan Ge – Journal of Educational Measurement, 2024
Most existing diagnostic models are developed to detect whether students have mastered a set of skills of interest, but few have focused on identifying what scientific misconceptions students possess. This article developed a general dual-purpose model for simultaneously estimating students' overall ability and the presence and absence of…
Descriptors: Models, Misconceptions, Diagnostic Tests, Ability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Maxi Schulz; Malte Kramer; Oliver Kuss; Tim Mathes – Research Synthesis Methods, 2024
In sparse data meta-analyses (with few trials or zero events), conventional methods may distort results. Although better-performing one-stage methods have become available in recent years, their implementation remains limited in practice. This study examines the impact of using conventional methods compared to one-stage models by re-analysing…
Descriptors: Meta Analysis, Data Analysis, Research Methodology, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Schweizer, Karl; Gold, Andreas; Krampen, Dorothea – Educational and Psychological Measurement, 2023
In modeling missing data, the missing data latent variable of the confirmatory factor model accounts for systematic variation associated with missing data so that replacement of what is missing is not required. This study aimed at extending the modeling missing data approach to tetrachoric correlations as input and at exploring the consequences of…
Descriptors: Data, Models, Factor Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Yibei Yin – International Journal of Web-Based Learning and Teaching Technologies, 2023
In order to study the big data of college students' employment, this paper takes the big data of college students' employment as the premise, analyzes the current employment data by establishing a DBN model, and puts forward relevant management measures, aiming to provide scientific basis for the management of graduates' employment data. The…
Descriptors: College Students, Student Employment, Data Analysis, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Jiawei Xiong; George Engelhard; Allan S. Cohen – Measurement: Interdisciplinary Research and Perspectives, 2025
It is common to find mixed-format data results from the use of both multiple-choice (MC) and constructed-response (CR) questions on assessments. Dealing with these mixed response types involves understanding what the assessment is measuring, and the use of suitable measurement models to estimate latent abilities. Past research in educational…
Descriptors: Responses, Test Items, Test Format, Grade 8
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  89