NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)3
Since 2006 (last 20 years)10
Audience
Location
Germany1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Villanueva Manjarres, Andrés; Moreno Sandoval, Luis Gabriel; Salinas Suárez, Martha Janneth – Digital Education Review, 2018
Educational Data Mining is an emerging discipline which seeks to develop methods to explore large amounts of data from educational settings, in order to understand students' behavior, interests and results in a better way. In recent years there have been various works related to this specialty and multiple data mining techniques derived from this…
Descriptors: Information Retrieval, Data Analysis, Educational Environment, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Schwendimann, Beat A.; Rodriguez-Triana, Maria Jesus; Vozniuk, Andrii; Prieto, Luis P.; Boroujeni, Mina Shirvani; Holzer, Adrian; Gillet, Denis; Dillenbourg, Pierre – IEEE Transactions on Learning Technologies, 2017
This paper presents a systematic literature review of the state-of-the-art of research on learning dashboards in the fields of Learning Analytics and Educational Data Mining. Research on learning dashboards aims to identify what data is meaningful to different stakeholders and how data can be presented to support sense-making processes. Learning…
Descriptors: Literature Reviews, Educational Research, Data Analysis, Data Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stapel, Martin; Zheng, Zhilin; Pinkwart, Niels – International Educational Data Mining Society, 2016
The number of e-learning platforms and blended learning environments is continuously increasing and has sparked a lot of research around improvements of educational processes. Here, the ability to accurately predict student performance plays a vital role. Previous studies commonly focused on the construction of predictors tailored to a formal…
Descriptors: Teaching Methods, Academic Achievement, Electronic Learning, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ting, Choo-Yee; Ho, Chiung Ching – British Journal of Educational Technology, 2015
This paper presents the dataset collected from student interactions with INQPRO, a computer-based scientific inquiry learning environment. The dataset contains records of 100 students and is divided into two portions. The first portion comprises (1) "raw log data", capturing the student's name, interfaces visited, the interface…
Descriptors: Inquiry, Educational Environment, Scientific Methodology, Interaction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol – Grantee Submission, 2015
Student models for adaptive systems may not model collaborative learning optimally. Past research has either focused on modeling individual learning or for collaboration, has focused on group dynamics or group processes without predicting learning. In the current paper, we adjust the Additive Factors Model (AFM), a standard logistic regression…
Descriptors: Educational Environment, Predictive Measurement, Predictor Variables, Cooperative Learning
Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol – International Educational Data Mining Society, 2015
Student models for adaptive systems may not model collaborative learning optimally. Past research has either focused on modeling individual learning or for collaboration, has focused on group dynamics or group processes without predicting learning. In the current paper, we adjust the Additive Factors Model (AFM), a standard logistic regression…
Descriptors: Educational Environment, Predictive Measurement, Predictor Variables, Cooperative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Sharona T.; Wilensky, Uri – Computers & Education, 2011
This study lies at an intersection between advancing educational data mining methods for detecting students' knowledge-in-action and the broader question of how conceptual and mathematical forms of knowing interact in exploring complex chemical systems. More specifically, it investigates students' inquiry actions in three computer-based models of…
Descriptors: Test Content, Mathematical Models, Prior Learning, Data Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Zur, Ayala; Eisikovits, Rivka A. – International Journal of Qualitative Studies in Education (QSE), 2011
The study presents a phenomenologically based research procedure, whose intent is to examine people's school experience and the meaning they ascribe to "school." Participants in this investigative endeavor are instructed to sketch an "ideal school," present their plan in a visual-schematic manner, and provide an oral and written description of…
Descriptors: Research Tools, Educational Experience, Educational Environment, Phenomenology
Peer reviewed Peer reviewed
Direct linkDirect link
Chang, Chih-Kai; Chen, Gwo-Dong; Wang, Chin-Yeh – Behaviour & Information Technology, 2011
Functional roles may explain the learning performance of groups. Detecting a functional role is critical for promoting group learning performance in computer-supported collaborative learning environments. However, it is not easy for teachers to identify the functional roles played by students in a web-based learning group, or the relationship…
Descriptors: Foreign Countries, Elementary School Teachers, Middle School Teachers, Group Dynamics
Peer reviewed Peer reviewed
Direct linkDirect link
Cocea, M.; Weibelzahl, S. – IEEE Transactions on Learning Technologies, 2011
Learning environments aim to deliver efficacious instruction, but rarely take into consideration the motivational factors involved in the learning process. However, motivational aspects like engagement play an important role in effective learning-engaged learners gain more. E-Learning systems could be improved by tracking students' disengagement…
Descriptors: Prediction, Electronic Learning, Online Courses, Delivery Systems