NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 137 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Verena Dornauer; Michael Netzer; Éva Kaczkó; Lisa-Maria Norz; Elske Ammenwerth – International Journal of Artificial Intelligence in Education, 2024
Cognitive presence is a core construct of the Community of Inquiry (CoI) framework. It is considered crucial for deep and meaningful online-based learning. CoI-based real-time dashboards visualizing students' cognitive presence may help instructors to monitor and support students' learning progress. Such real-time classifiers are often based on…
Descriptors: Electronic Learning, Discussion, Classification, Automation
Peer reviewed Peer reviewed
Direct linkDirect link
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
K. I. Senadhira; R. A. H. M. Rupasingha; B. T. G. S. Kumara – Education and Information Technologies, 2024
The majority of educational institutions around the world have switched to online learning due to the COVID-19 pandemic. Since continuing education has become important during the pandemic as well, academics and students have recognized the value of online learning to avoid their challenges. The objective of this study is to categorize peoples'…
Descriptors: Classification, Artificial Intelligence, Social Media, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Tao; Hu, Shengze; Yang, Huali; Geng, Jing; Liu, Sannyuya; Zhang, Hao; Yang, Zongkai – IEEE Transactions on Learning Technologies, 2023
The global outbreak of the new coronavirus epidemic has promoted the development of intelligent education and the utilization of online learning systems. In order to provide students with intelligent services, such as cognitive diagnosis and personalized exercises recommendation, a fundamental task is the concept tagging for exercises, which…
Descriptors: Educational Technology, Prediction, Electronic Learning, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Amane, Meryem; Aissaoui, Karima; Berrada, Mohammed – International Journal of Information and Learning Technology, 2023
Purpose: Together, learning objects (LOs) and e-pedagogical practices have the potential to improve the performance of e-learning systems in several ways. They can make e-learning more personalised and adaptable, providing students with a more engaging and effective learning experience. Design/methodology/approach: The development of LOs and…
Descriptors: Electronic Learning, Resource Units, Metadata, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sebbaq, Hanane; El Faddouli, Nour-eddine – International Review of Research in Open and Distributed Learning, 2022
The quality assurance of MOOCs focuses on improving their pedagogical quality. However, the tools that allow reflection on and assistance regarding the pedagogical aspects of MOOCs are limited. The pedagogical classification of MOOCs is a difficult task, given the variability of MOOCs' content, structure, and designs. Pedagogical researchers have…
Descriptors: MOOCs, Classification, Educational Objectives, Models
Peer reviewed Peer reviewed
Direct linkDirect link
O. S. Adewale; O. C. Agbonifo; E. O. Ibam; A. I. Makinde; O. K. Boyinbode; B. A. Ojokoh; O. Olabode; M. S. Omirin; S. O. Olatunji – Interactive Learning Environments, 2024
With the advent of technological advancement in learning, such as context-awareness, ubiquity and personalisation, various innovations in teaching and learning have led to improved learning. This research paper aims to develop a system that supports personalised learning through adaptive content, adaptive learning path and context awareness to…
Descriptors: Cognitive Style, Individualized Instruction, Learning Processes, Preferences
Peer reviewed Peer reviewed
Direct linkDirect link
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Khaldi, Amina; Bouzidi, Rokia; Nader, Fahima – Smart Learning Environments, 2023
In recent years, university teaching methods have evolved and almost all higher education institutions use e-learning platforms to deliver courses and learning activities. However, these digital learning environments present significant dropout and low completion rates. This is primarily due to the lack of student motivation and engagement.…
Descriptors: Gamification, Electronic Learning, Higher Education, Recognition (Achievement)
Peer reviewed Peer reviewed
Direct linkDirect link
Sebbaq, Hanane; El Faddouli, Nour-eddine – Interactive Technology and Smart Education, 2022
Purpose: The purpose of this study is, First, to leverage the limitation of annotated data and to identify the cognitive level of learning objectives efficiently, this study adopts transfer learning by using word2vec and a bidirectional gated recurrent units (GRU) that can fully take into account the context and improves the classification of the…
Descriptors: MOOCs, Classification, Electronic Learning, Educational Objectives
Peer reviewed Peer reviewed
Direct linkDirect link
Soomaiya Hamid; Narmeen Zakaria Bawany – Interactive Learning Environments, 2024
E-learning is the process of sharing knowledge out of the traditional classrooms through different online tools using internet. The availability and use of these tools are not easy for every student. Many institutions gather e-learning feedback to know the problems of students to improve their systems. In e-learning systems, typically a high…
Descriptors: Feedback (Response), Electronic Learning, Automation, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xieling Chen; Di Zou; Haoran Xie; Gary Cheng; Zongxi Li; Fu Lee Wang – International Review of Research in Open and Distributed Learning, 2025
Massive open online courses (MOOCs) offer rich opportunities to comprehend learners' learning experiences by examining their self-generated course evaluation content. This study investigated the effectiveness of fine-tuned BERT models for the automated classification of topics in online course reviews and explored the variations of these topics…
Descriptors: MOOCs, Distance Education, Online Courses, Course Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Zheng, Yafeng; Gao, Zhanghao; Shen, Jun; Zhai, Xuesong – IEEE Transactions on Learning Technologies, 2023
A text semantic classification is an essential approach to recognizing the verbal intention of online learners, empowering reliable understanding, and inquiry for the regulations of knowledge construction amongst students. However, online learning is increasingly switching from static watching patterns to the collaborative discussion. The current…
Descriptors: Semantics, Classification, Electronic Learning, Computer Mediated Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Kumar, Bimal Aklesh; Sharma, Bibhya; Nakagawa, Elisa Yumi – Education and Information Technologies, 2021
Context Aware Mobile Learning (CAML) provides a learning experience tailored to educational needs and the particular circumstance of the learner. CAML has become an active area of research. The aim of this paper is to provide an overview of research conducted on CAML through counting and classifying contributions. The applied method is a…
Descriptors: Context Effect, Electronic Learning, Educational Needs, Classification
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10