NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Dahle, Reena; Rasel, Rafiul – IEEE Transactions on Education, 2016
This paper presents a series of course modules developed as a high-impact and cost-effective learning tool for modeling and simulating the microfabrication process and design of microelectromechanical systems (MEMS) devices using three-dimensional (3-D) printing. Microfabrication technology is an established fabrication technique for small and…
Descriptors: Educational Technology, Learning Modules, Electromechanical Technology, Printing
Peer reviewed Peer reviewed
Direct linkDirect link
Kyle, Aaron M.; Jangraw, David C.; Bouchard, Matthew B.; Downs, Matthew E. – IEEE Transactions on Education, 2016
This paper presents the development, implementation, and assessment of a project-based Bioinstrumentation course. All course lectures and hands-on laboratory activities are related to a central project theme: a cardiac pacemaker. The students create a benchtop cardiac pacemaker by applying instrumentation knowledge acquired in the course to each…
Descriptors: Active Learning, Student Projects, Engineering Education, Biotechnology
Peer reviewed Peer reviewed
Direct linkDirect link
Pozzi, Rossella; Noè, Carlo; Rossi, Tommaso – European Journal of Engineering Education, 2015
According to the literature, in recent years, developing experiential learning has fulfilled the requirement of a deep understanding of lean philosophy by engineering students, demonstrating the advantages and disadvantages of some of the key principles of lean manufacturing. On the other hand, the literature evidences how some kinds of game-based…
Descriptors: Experiential Learning, Engineering Education, Manufacturing, Engineering Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Kafai, Yasmin B.; Lee, Eunkyoung; Searle, Kristin; Fields, Deborah; Kaplan, Eliot; Lui, Debora – ACM Transactions on Computing Education, 2014
In this article, we examine the use of electronic textiles (e-textiles) for introducing key computational concepts and practices while broadening perceptions about computing. The starting point of our work was the design and implementation of a curriculum module using the LilyPad Arduino in a pre-AP high school computer science class. To…
Descriptors: High School Students, Scientific Concepts, Educational Practices, Curriculum Development
Peer reviewed Peer reviewed
Direct linkDirect link
Ngai, Grace; Chan, Stephen C. F.; Leong, Hong Va; Ng, Vincent T. Y. – ACM Transactions on Computing Education, 2013
This article presents the design and development of i*CATch, a construction kit for physical and wearable computing that was designed to be scalable, plug-and-play, and to provide support for iterative and exploratory learning. It consists of a standardized construction interface that can be adapted for a wide range of soft textiles or electronic…
Descriptors: Computer System Design, Engineering Technology, Courseware, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Awang, Tuan Salwani; Zakaria, Effandi – Turkish Online Journal of Educational Technology - TOJET, 2012
Engineering technology students can attain a meaningful mathematics learning if they are allowed to actively participate in hands-on activities. However, the current dissemination of knowledge in the classroom still focuses on teacher-centered paradigm of teaching. A study to explore lecturers' views regarding a newly developed integral calculus…
Descriptors: Educational Technology, Calculus, Mathematics Education, Lesson Plans
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jain, Prashant K.; Gu, Yuxiang; Rizwan-uddin – Advances in Engineering Education, 2008
Internet extends the reach of existing laboratory and training infrastructure to beyond the walls of such facilities. Though nothing can replace the hands-on experience in a laboratory; a carefully developed web-based digital lab may be the next best thing. In some cases, there may be benefits associated with a "distance laboratory" that…
Descriptors: Engineering Technology, Internet, Virtual Classrooms, Science Laboratories